Abstract The industrial importance of the CC double bond difunctionalization in vegetable oils/fatty acid chains motivates computational studies aimed at helping to improve experimental protocols. The CC double bond epoxidation is studied with hydrogen peroxide, peracetic acid (CH3CO3H), and performic acid (HCO3H) oxidizing agents. The epoxide ring‐opening mechanism is calculated in the presence of ZnCl2, NiCl2, and FeCl2Lewis acidic catalysts. Computations show that H2O2(∆G‡= 39 kcal/mol,TS1HP) is not an effective oxidizing agent compared to CH3CO3H (∆G‡= 29.8 kcal/mol,TS1PA) and HCO3H (∆G‡= 26.7 kcal/mol,TS1PF). The FeCl2(∆G‡= 14.7 kcal/mol,TS1FC) coordination to the epoxide oxygen facilitates the ring‐opening via lower energy barriers compared to the ZnCl2(∆G‡= 19.5 kcal/mol,TS1ZC) and NiCl2(∆G‡= 29.4 kcal/mol,TS1NC) coordination. ZnCl2was frequently utilized as a catalyst in laboratory‐scale procedures. The energetic span model identifies the FeCl2(FC) catalytic cycle as the best option for the epoxide ring‐opening.
more »
« less
This content will become publicly available on April 7, 2026
Can Water Trigger Room‐Temperature Formation of Benzofuran‐2( 3H )‐one Scaffolds From Vinyldiazene Derivatives? Computational Insights Into an Unusual Cyclization
ABSTRACT Access to benzofuran‐2(3H)‐one derivatives from readily available substrates under mild conditions is crucial in the pharmaceutical and plastics industries. We identified (Z)‐3‐(2‐phenylhydrazineylidene)benzofuran‐2(3H)‐one (P) during the recrystallization of (E)‐2‐(2,2‐dichloro‐1‐(phenyldiazenyl)vinyl)phenol using a 96% ethanol solution. The mechanism of the unexpected substrate conversion leading toPis investigated using density functional calculations. The computations revealed that ethanol is required to initiate the reaction viaTS1E, which involves a concerted deprotonation of ethanol by the basic diaza group of the substrate and an ethoxy group attacking the electrophilic center (Cl2C), with an energy barrier of 28.3 kcal/mol. The resulting intermediate (I1E) is calculated to be unstable and can yield a cyclic chloroacetal adduct with a lower energy barrier of 2.2 kcal/mol via the ring‐closure transition state (TS2E). In the absence of water, the next steps are impossible because water is required to cleave the ether bond, yieldingP. A small amount of water (4% of the recrystallization solvent) can promote further transformation ofI2Evia the transition statesTS3E(∆G‡ = 11.1 kcal/mol) andTS4E(∆G‡ = 10.5 kcal/mol). A comparison of the ethanol/water‐ and only water‐promoted free energy profiles shows that the presence of ethanol is crucial for lowering the energy barriers (by about 5 kcal/mol) for the initial two steps leading to the cyclic chloroacetal (I2E), whereas water is then required to initiate product formation.
more »
« less
- Award ID(s):
- 2152633
- PAR ID:
- 10582909
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Journal of Computational Chemistry
- Volume:
- 46
- Issue:
- 10
- ISSN:
- 0192-8651
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Reaction of {LiC6H2−2,4,6‐Cyp3⋅Et2O}2(Cyp=cyclopentyl) (1) of the new dispersion energy donor (DED) ligand, 2,4,6‐triscyclopentylphenyl with SnCl2afforded a mixture of the distannene {Sn(C6H2−2,4,6‐Cyp3)2}2(2), and the cyclotristannane {Sn(C6H2−2,4,6‐Cyp3)2}3(3).2is favored in solution at higher temperature (345 K or above) whereas3is preferred near 298 K. Van't Hoff analysis revealed the3to2conversion has a ΔH=33.36 kcal mol−1and ΔS=0.102 kcal mol−1 K−1, which gives a ΔG300 K=+2.86 kcal mol−1, showing that the conversion of3to2is an endergonic process. Computational studies show that DED stabilization in3is −28.5 kcal mol−1per {Sn(C6H2−2,4,6‐Cyp3)2unit, which exceeds the DED energy in2of −16.3 kcal mol−1per unit. The data clearly show that dispersion interactions are the main arbiter of the3to2equilibrium. Both2and3possess large dispersion stabilization energies which suppress monomer dissociation (supported by EDA results).more » « less
-
Abstract Reaction of (P)AuOTf [P=P(t‐Bu)2o‐biphenyl] with indenyl‐ or 3‐methylindenyl lithium led to isolation of gold η1‐indenyl complexes (P)Au(η1‐inden‐1‐yl) (1 a) and (P)Au(η1‐3‐methylinden‐1‐yl) (1 b), respectively, in >65 % yield. Whereas complex1 bis static, complex1 aundergoes facile, degenerate 1,3‐migration of gold about the indenyl ligand (ΔG≠153K=9.1±1.1 kcal/mol). Treatment of complexes1 aand1 bwith (P)AuNTf2led to formation of the corresponding cationic bis(gold) indenyl complexestrans‐[(P)Au]2(η1,η1‐inden‐1,3‐yl) (2 a) andtrans‐[(P)Au]2(η1,η2‐3‐methylinden‐1‐yl) (2 b), respectively, which were characterized spectroscopically and modeled computationally. Despite the absence of aurophilic stabilization in complexes2 aand2 b, the binding affinity of mono(gold) complex1 atoward exogenous (P)Au+exceed that of free indene by ~350‐fold and similarly the binding affinity of1 btoward exogenous (P)Au+exceed that of 3‐methylindene by ~50‐fold. The energy barrier for protodeauration of bis(gold) indenyl complex2 awith HOAc was ≥8 kcal/mol higher than for protodeauration of mono(gold) complex1 a.more » « less
-
Abstract This computational study explores the copper (I) chloride catalyzed synthesis of (E)‐1‐(2,2‐dichloro‐1‐phenylvinyl)‐2‐phenyldiazene (2Cl‐VD) from readily available hydrazone derivative and carbon tetrachloride (CCl4).2Cl‐VDhas been extensively utilized to synthesize variety of heterocyclic organic compounds in mild conditions. The present computational investigations primarily focus on understanding the role of copper (I) andN1,N1,N2,N2‐tetramethylethane‐1,2‐diamine (TMEDA) in this reaction, TMEDA often being considered a proton scavenger by experimentalists. Considering TMEDA as a ligand significantly alters the energy barrier. In fact, it is only 8.3 kcal/mol higher compared to the ligand‐free (LF) route for the removal of a chlorine atom to form the radical·CCl3but the following steps are almost barrierless. This intermediate then participates in attacking the electrophilic carbon in the hydrazone. Crucially, the study reveals that the overall potential energy surface is thermodynamically favorable, and the theoretical turnover frequency (TOF) value is higher in the case of Cu(I)‐TMEDA complex catalyzed pathway.more » « less
-
Although copper‐catalyzed organic transformations are prevalent, insights into the interactions of phenols with simple copper(II) salts are not well understood. In contrast, inspired by the oxygenase‐type modifications of the phenolic substrates, the reactions of substituted phenols with metastable copper–oxygen intermediates are well documented. The present report sheds light on the reactions of substituted phenols with benchtop stable CuCl2salt and the role of a common base like triethylamine. Moreover, the reactions of substituted phenols with CuCl2in the presence of weakly coordinating tripodalN‐nitrosated ligandL3NOhave been illustrated, while a closely related tripodal copper(II) complexL3HCuCl2(2) of the corresponding non‐nitrosated ligandL3Hdoes not react with the phenolic substrates. Phenol reactions with CuCl2in the presence of theL3NOligand enable in depth mechanistic investigation, thereby illustrating a bimolecular rate law with ΔH‡= 15.13 kcal mol−1, ΔS‡ = −9.6 eu, and kinetic isotope effectk2(ArOH)/k2(ArOD) in the range of 1.35–1.43. Thus, these findings suggest that simple copper(II) salts like CuCl2are capable of facilitating a proton‐coupled electron transfer (PCET) pathway.more » « less
An official website of the United States government
