Abstract AimUnderstanding the mechanisms promoting resilience in plant communities is crucial in times of increasing disturbance and global environmental change. Here, we present the first meta‐analysis evaluating the relationship between functional diversity and resilience of plant communities. Specifically, we tested whether the resilience of plant communities is positively correlated with interspecific trait variation (following the niche complementarity hypothesis) and the dominance of acquisitive and small‐size species (following the mass ratio hypothesis), and for the context‐dependent effects of ecological and methodological differences across studies. LocationGlobal. Time Period2004–2021. Major Taxa StudiedVascular plants. MethodsWe compiled a dataset of 69 independent sites from 26 studies that have quantified resilience. For each site, we calculated functional diversity indices based on the floristic composition and functional traits of the plant community (obtained from the TRY database) which we correlated with resilience of biomass and floristic composition. After transforming correlation coefficients to Fisher'sZ‐scores, we conducted a hierarchical meta‐analysis, using a multilevel random‐effects model that accounted for the non‐independence of multiple effect sizes and the effects of ecological and methodological moderators. ResultsIn general, we found no positive functional diversity–resilience relationships of grand mean effect sizes. In contrast to our expectations, we encountered a negative relationship between resilience and trait variety, especially in woody ecosystems, whereas there was a positive relationship between resilience and the dominance of acquisitive species in herbaceous ecosystems. Finally, the functional diversity–resilience relationships were strongly affected by both ecological (biome and disturbance properties) and methodological (temporal scale, study design and resilience metric) characteristics. Main ConclusionsWe rejected our hypothesis of a general positive functional diversity–resilience relationship. In addition to strong context dependency, we propose that idiosyncratic effects of single resident species present in the communities before the disturbances and biological legacies could play major roles in the resilience of terrestrial plant communities.
more »
« less
Traits of dominant plant species drive normalized difference vegetation index in grasslands globally
Abstract AimTheoretical, experimental and observational studies have shown that biodiversity–ecosystem functioning (BEF) relationships are influenced by functional community structure through two mutually non‐exclusive mechanisms: (1) the dominance effect (which relates to the traits of the dominant species); and (2) the niche partitioning effect [which relates to functional diversity (FD)]. Although both mechanisms have been studied in plant communities and experiments at small spatial extents, it remains unclear whether evidence from small‐extent case studies translates into a generalizable macroecological pattern. Here, we evaluate dominance and niche partitioning effects simultaneously in grassland systems world‐wide. LocationTwo thousand nine hundred and forty‐one grassland plots globally. Time period2000–2014. Major taxa studiedVascular plants. MethodsWe obtained plot‐based data on functional community structure from the global vegetation plot database “sPlot”, which combines species composition with plant trait data from the “TRY” database. We used data on the community‐weighted mean (CWM) and FD for 18 ecologically relevant plant traits. As an indicator of primary productivity, we extracted the satellite‐derived normalized difference vegetation index (NDVI) from MODIS. Using generalized additive models and deviation partitioning, we estimated the contributions of trait CWM and FD to the variation in annual maximum NDVI, while controlling for climatic variables and spatial structure. ResultsGrassland communities dominated by relatively tall species with acquisitive traits had higher NDVI values, suggesting the prevalence of dominance effects for BEF relationships. We found no support for niche partitioning for the functional traits analysed, because NDVI remained unaffected by FD. Most of the predictive power of traits was shared by climatic predictors and spatial coordinates. This highlights the importance of community assembly processes for BEF relationships in natural communities. Main conclusionsOur analysis provides empirical evidence that plant functional community structure and global patterns in primary productivity are linked through the resource economics and size traits of the dominant species. This is an important test of the hypotheses underlying BEF relationships at the global scale.
more »
« less
- PAR ID:
- 10508059
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Wiley Online Library
- Date Published:
- Journal Name:
- Global Ecology and Biogeography
- Volume:
- 32
- Issue:
- 5
- ISSN:
- 1466-822X
- Page Range / eLocation ID:
- 695 to 706
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Grasslands are subject to climate change, such as severe drought, and an important aspect of their functioning is temporal stability in response to extreme climate events. Previous research has explored the impacts of extreme drought and post‐drought periods on grassland stability, yet the mechanistic pathways behind these changes have rarely been studied.Here, we implemented an experiment with 4 years of drought and 3 years of recovery to assess the effects of drought and post‐drought on the temporal stability of above‐ground net primary productivity (ANPP) and its underlying mechanisms. To do so, we measured community‐weighted mean (CWM) of six plant growth and nine seed traits, functional diversity, population stability and species asynchrony across two cold, semiarid grasslands in northern China. We also performed piecewise structural equation models (SEMs) to assess the relationships between ANPP stability and its underlying mechanisms and how drought and post‐drought periods alter the relative contribution of these mechanisms to ANPP stability.We found that temporal stability of ANPP was not reduced during drought due to grasses maintaining productivity, which compensated for increased variation of forb productivity. Moreover, ANPP recovered rapidly after drought, and both grasses and forbs contributed to community stability during the post‐drought period. Overall, ANPP stability decreased during the combined drought and post‐drought periods because of rapid changes in ANPP from drought to post‐drought. SEMs revealed that the temporal stability of ANPP during drought and post‐drought periods was modulated by functional diversity and community‐weighted mean traits directly and indirectly by altering species asynchrony and population stability. Specifically, the temporal stability of ANPP was positively correlated with functional divergence of plant communities. CWMs of seed traits (e.g. seed width and thickness), rather than plant growth traits (e.g. specific leaf area and leaf nutrient content), stabilized grassland ANPP. Productivity of plant communities with large and thick seeds was less sensitive to precipitation changes over time.These results emphasize the importance of considering both the functional trait distribution among species and seed traits of dominant species since their combined effects can stabilize ecosystem functions under global climate change scenarios. Read the freePlain Language Summaryfor this article on the Journal blog.more » « less
-
Abstract The relationship between biodiversity and ecosystem function (BEF) captivates ecologists, but the factors responsible for the direction of this relationship remain unclear. While higher ecosystem functioning at higher biodiversity levels (‘positive BEF’) is not universal in nature, negative BEF relationships seem puzzlingly rare. Here, we develop a dynamical consumer‐resource model inspired by microbial decomposer communities in pitcher plant leaves to investigate BEF. We manipulate microbial diversity via controlled colonization and measure their function as total ammonia production. We test how niche partitioning among bacteria and other ecological processes influence BEF in the leaves. We find that a negative BEF can emerge from reciprocal interspecific inhibition in ammonia production causing a negative complementarity effect, or from competitive hierarchies causing a negative selection effect. Absent these factors, a positive BEF was the typical outcome. Our findings provide a potential explanation for the rarity of negative BEF in empirical data.more » « less
-
Abstract Plant traits are useful proxies of plant strategies and can influence community and ecosystem responses to climate extremes, such as severe drought. Few studies, however, have investigated both the immediate and lagged effects of drought on community‐weighted mean (CWM) plant traits, with even less research on the relative roles of interspecific vs. intraspecific trait variability in such responses.We experimentally reduced growing season precipitation by 66% in two cold‐semi‐arid grassland sites in northern China for four consecutive years to explore the drought resistance of CWM traits as well as their recovery 2 years following the drought. In addition, we isolated the effects of both interspecific and intraspecific trait variability on shifts in CWM traits.At both sites, we observed significant effects of drought on interspecific and intraspecific trait variability which, in some cases, led to significant changes in CWM traits. For example, drought led to reduced CWM plant height and leaf phosphorous content, but increased leaf carbon content at both sites, with responses primarily due to intraspecific trait shifts. Surprisingly, these CWM traits recovered completely 2 years after the extreme drought. Intraspecific trait variability influenced CWM traits via both positive and negative covariation with interspecific trait variability during drought and recovery phases.These findings highlight the important role of interspecific and intraspecific trait variability in driving the response and recovery of CWM traits following extreme, prolonged drought. Read the freePlain Language Summaryfor this article on the Journal blog.more » « less
-
Abstract After 25 years of biodiversity experiments, it is clear that higher biodiversity (B) plant communities are usually more productive and often have greater ecosystem functioning (EF) than lower diversity communities. However, the mechanisms underlying this positive biodiversity–ecosystem functioning (BEF) relationship are still poorly understood.The vast majority of past work in BEF research has focused on the roles of mathematically partitioned complementarity and selection effects. While these mathematical approaches have provided insights into underlying mechanisms, they have focused strongly on competition and resource partitioning.Importantly, mathematically partitioned complementarity effects include multiple facilitative mechanisms, including dilution of species‐specific pathogens, positive changes in soil nutrient cycling, associational defence and microclimate amelioration.Synthesis. This Special Feature takes an experimental and mechanistic approach to teasing out the facilitative mechanisms that underlie positive BEF relationships. As an example, we demonstrate diversity‐driven changes in microclimate amelioration. Articles in this Special Feature explore photoinhibition, experimental manipulations of microclimate, lidar examinations of plant canopy effects and higher‐order trophic interactions as facilitative mechanisms behind classic BEF processes. We emphasize the need for future BEF experiments to disentangle the facilitative mechanisms that are interlinked with niche complementarity to better understand the fundamental processes by which diversity regulates life on Earth.more » « less