skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Enhanced adhesion in two-photon polymerization direct laser writing
We have quantified the adhesion forces between two-photon polymerization direct laser writing (TPP-DLW) microstructures and glass surfaces with and without an adhesion promoter. Glass surfaces treated with an acryloxy-silane agent produce adhesion forces that are almost three times larger than the forces observed with pristine glass surfaces. Determination of the substrates’ surface free energies suggests that the observed adhesion enhancement is chemical in its nature, implying that covalent bonds are formed between the polymer and the glass by means of the silane agent. The importance of this finding is demonstrated in the successful production of glassy carbon microstructures using TPP-DLW, followed by pyrolysis.  more » « less
Award ID(s):
1905582
PAR ID:
10597388
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
AIP Advances
Volume:
10
Issue:
4
ISSN:
2158-3226
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Direct laser writing (DLW) via two‐photon polymerization is an emerging highly precise technique for the fabrication of intricate cellular scaffolds. Despite recent progress in using two‐photon‐polymerized scaffolds to probe fundamental cell behaviors, new methods to direct and modulate microscale cell alignment and selective cell adhesion using two‐photon‐polymerized microstructures are of keen interest. Here, a DLW‐fabricated 2D and 3D hydrogel microstructures, with alternating soft and stiff regions, for precisely controlled cell alignment are reported. The use of both cell‐adhesive and cell‐repellent hydrogels allows selective adhesion and alignment of human mesenchymal stem cells within the printed structure. Importantly, DLW patterning enables cell alignment on flat surfaces as well as irregular and curved 3D microstructures, which are otherwise challenging to pattern with cells. 
    more » « less
  2. Abstract We demonstrate the use of tip-enhanced Raman spectroscopy (TERS) on polymeric microstructures fabricated by two-photon polymerization direct laser writing (TPP-DLW). Compared to the signal intensity obtained in confocal Raman microscopy, a linear enhancement of almost two times is measured when using TERS. Because the probing volume is much smaller in TERS than in confocal Raman microscopy, the effective signal enhancement is estimated to be ca. 104. We obtain chemical maps of TPP microstructures using TERS with relatively short acquisition times and with high spatial resolution as defined by the metallic tip apex radius of curvature. We take advantage of this high resolution to study the homogeneity of the polymer network in TPP microstructures printed in an acrylic-based resin. We find that the polymer degree of conversion varies by about 30% within a distance of only 100 nm. The combination of high resolution topographical and chemical data delivered by TERS provides an effective analytical tool for studying TPP-DLW materials in a non-destructive way. 
    more » « less
  3. The ubiquitous nature of microorganisms, especially of biofilm-forming bacteria, makes biofouling a prevalent challenge in many settings, including medical and industrial environments immersed in liquid and subjected to shear forces. Recent studies have shown that zwitterionic groups are effective in suppressing bacteria and protein adhesion as well as biofilm growth. However, the effect of zwitterionic groups on the removal of surface-bound bacteria has not been extensively studied. Here we present a microfluidic approach to evaluate the effectiveness in facilitating bacteria detachment by shear of an antifouling surface treatment using (3-(dimethyl;(3-trimethoxysilyl)propyl)ammonia propane-1-sulfonate), a sulfobetaine silane (SBS). Control studies show that SBS-functionalized surfaces greatly increase protein (bovine serum albumin) removal upon rinsing. On the same surfaces, enhanced bacteria ( Pseudomonas aeruginosa ) removal is observed under shear. To quantify this enhancement a microfluidic shear device is employed to investigate how SBS-functionalized surfaces promote bacteria detachment under shear. By using a microfluidic channel with five shear zones, we compare the removal of bacteria from zwitterionic and glass surfaces under different shear rates. At times of 15 min, 30 min, and 60 min, bacteria adhesion on SBS-functionalized surfaces is reduced relative to the control surface (glass) under quiescent conditions. However, surface-associated bacteria on the SBS-functionalized glass and control show similar percentages of live cells, suggesting minimal intrinsic biocidal effect from the SBS-functionalized surface. Notably, when exposed to shear rates ranging from 10 4 to 10 5 s −1 , significantly fewer bacteria remain on the SBS-functionalized surfaces. These results demonstrate the potential of zwitterionic sulfobetaine as effective antifouling coatings that facilitate the removal of bacteria under shear. 
    more » « less
  4. Abstract Direct laser writing (DLW) is an advanced fabrication technique that allows users to create complex 3D microstructures from polymer precursors. These microstructures can be integrated with micro‐electromechanical systems (MEMS) actuators. MEMS actuators provide a convenient platform for interacting with the intricate microstructures, either to characterize their mechanical properties or cause them to deform. Structures are fabricated directly onto electrostatic comb drives and chevron thermal actuators that are produced using a commercial foundry process. By applying a voltage to the MEMS actuators, highly controlled deformation of these microstructures is observed. Mechanical behaviors of microstructures produced with different materials and fabrication conditions are compared. MEMS–DLW integration is a convenient approach to characterizing the mechanics of DLW microstructures and may well lead to a new class of dynamic 3D devices for applications ranging from tissue engineering to imaging. 
    more » « less
  5. Two-photon polymerization direct laser writing (TPP-DLW) is one of the most versatile technologies to additively manufacture complex parts with nanoscale resolution. However, the wide range of mechanical properties that results from the chosen combination of multiple process parameters imposes an obstacle to its widespread use. Here we introduce a thermal post-curing route as an effective and simple method to increase the mechanical properties of acrylate-based TPP-DLW-derived parts by 20-250% and to largely eliminate the characteristic coupling of processing parameters, material properties and part functionality. We identify the underlying mechanism of the property enhancement as a self-initiated thermal curing reaction, which robustly facilitates the high property reproducibility that is essential for any application of TPP-DLW. 
    more » « less