skip to main content


Title: Making on the Move: Mobility, Makerspaces, and Art Education
Abstract

Combining the excitement from the maker movement and the novel creation of deployable makerspaces, we review the development of the Mobile Atelier for Kinaesthetic Education (MAKE) 3D. MAKE 3D is a mobile makerspace platform that can be deployed anywhere there is electricity to create a curricular spectacle of digital fabrication in particular additive manufacturing or what is more commonly referred to as 3D printing. Our project combines this notion of curricular spectacle and a mobile makerspace platform, to develop strategies in how to meet the novice user almost anywhere and to entice them into a series of hands‐on activities that would give them a range of knowledge and aptitude for additive techniques in digital fabrication. We review the component parts of our Material to Form curriculum and explore thematic connections between the maker movement and art education including STEAM and interdisciplinarity; design thinking and kinaesthetic learning; and place‐based education and the mobile platform. Informal practices in art education and the mobile makerspace advances forms of place and kinaesthetic learning. Similar curricular setups are therefore encouraged to reinforce and expand prior knowledge, broaden participation and provide an adaptable learning space for STEAM initiatives.

 
more » « less
NSF-PAR ID:
10452357
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
International Journal of Art & Design Education
Volume:
40
Issue:
1
ISSN:
1476-8062
Page Range / eLocation ID:
p. 52-65
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. 3D printing technology has played an integral part in the growth of makerspaces, showing potential in enabling the integration of art (A) with science, technology, engineering, and math (STEM) disciplines, giving new possibilities to STEAM implementation. This paper presents the effectiveness of a deployable mobile making platform and its curriculum, focused on 3D printing education. This setup, which draws inspiration from modern makerspaces, was deployed for 227 undergraduate students in Art and Engineering majors at multiple campuses of a large northeastern university and used in either a pre-arranged hour-long session or voluntary walk-in session. Self-reported surveys were created to measure participants’ pre- and post-exposure awareness of 3D printing, design, and STEAM quantified through their (1) familiarity, (2) attitude, (3) interest, and (4) self-efficacy. Additionally, observations on participant engagement and use of the space were made. Statistically significant increases in awareness of 3D printing technology were observed in the participants from both Art and Engineering majors, as well as at different campus locations, irrespective of their initial differences. Observations also show a difference in engagement between prearranged sessions and walk-in sessions, which indicates that different session formats may promote specific engagement with different participant types. Ultimately, this research demonstrates two key findings: (1) though they may gravitate to different elements of 3D printing and design, a single makerspace can be used to engage both Art and Engineering students and (2) by introducing mobility to the traditional idea of a makerspace, participants with different initial levels of AM awareness can be brought to similar final awareness. This second finding is especially essential given the disparities in modern student access to 3D printing technology. 
    more » « less
  2. The growing popularity of progressive education pedagogies combined with the continued rise of the maker movement has propelled knowledge and interest in makerspaces across education. As a result, makerspaces have become a common sight on college campuses around the world. These spaces offer students a unique opportunity to apply the hard and soft skills learned in the classroom to projects with real consequences. Students learn to take ownership of their work and experiment and iterate until they are proud of their results. Through this process they grow in design self-efficacy, innovation, and collaboration skills. Makerspaces are a powerful tool in the hands of university professors, but not all students benefit from them equally. Many students still face real or perceived barriers to entry caused in part by a lack of comfort and confidence in the space. This study seeks to examine students’ sense of belonging at a university makerspace and determine how gender, major, study locations, and classes affect this sense. Online surveys were distributed to students who used the makerspace in Fall 2022 and Spring 2023. Students answered a series of Likert style questions about how they feel in the space and statistical tests were used to determine correlation and significance of the results. It was found that sense of belonging in the space overall was high, but that females, non-mechanical engineering majors, and students who did not study in the space reported statistically lower sense of comfort. Suggestions are given to makerspace administrators of how to address and avoid these gaps in belonging and make the space more inclusive and welcoming to all students. 
    more » « less
  3. Within the last ten years, the Maker Movement has had a significant effect on Science, Technology, Engineering and Mathematics (STEM) education. Growing in tandem with the interest in makerspaces, digital fabrication technology, and innovation-oriented curricula has been researchers’ desire to understand the pedagogical value of these efforts. Strategies have included measuring technological literacies, uncovering the links between Maker practices and professional engineering standards, and developing standards to capture the non-technical skills, such as self-efficacy and persistence, that Makers develop. The diffusion of Maker Education research has worked in favor of constructing diverse kinds of knowledge, but at the expense of developing coherent theory, pedagogy, and practice. Even within Engineering Education, the aims, theoretical approaches, and methods used to study Maker Education vary widely. Given that a significant body of literature has been amassed, we believe it is an opportune time to take stock of what has been learned through Maker Education research. As an initial step towards a larger multidisciplinary study, this paper will focus on assessing the state of Engineering Education literature on Maker Education and synthesizing it with theoretical frameworks established within Learning Sciences research. 
    more » « less
  4. null (Ed.)
    In this article, we describe efforts to reduce barriers of entry to pre-college engineering in a rural community by training local teens to become maker-mentors and staff a mobile makerspace in their community. Following Nasir and Cooks (2009), we bring a communities of practice frame to our inquiry, focusing on inbound and peripheral learning and identity trajectories as a mechanism for representing the maker-mentor experience (Wenger, 1998). Through a longitudinal case study, we traced the individual trajectories of five maker-mentors over two years. We found that maker-mentors who participated in mentorship training activities, collaborated with their peers on making projects, and co-facilitated events throughout the community were more likely to follow an inbound trajectory. Maker-mentors who participated in training activities and collaborative making projects, but only facilitated one or two of the twelve community events never moved beyond the periphery. We offer lessons learned from including a mentorship component in a pre-college maker program, an unusual design feature that afforded more opportunities to create inbound trajectories. A key affordance of the maker-mentor program was that it allowed teens to explore areas of making that were in line with their interests while still being a part of a larger community of practice. Understanding learning and identity trajectories will allow us to continually improve pre-college engineering programming and education opportunities that build on students’ funds of knowledge. 
    more » « less
  5. null (Ed.)
    As our nation’s need for engineering professionals grows, a sharp rise in P-12 engineering education programs and related research has taken place (Brophy, Klein, Portsmore, & Rogers, 2008; Purzer, Strobel, & Cardella, 2014). The associated research has focused primarily on students’ perceptions and motivations, teachers’ beliefs and knowledge, and curricula and program success. The existing research has expanded our understanding of new K-12 engineering curriculum development and teacher professional development efforts, but empirical data remain scarce on how racial and ethnic diversity of student population influences teaching methods, course content, and overall teachers’ experiences. In particular, Hynes et al. (2017) note in their systematic review of P-12 research that little attention has been paid to teachers’ experiences with respect to racially and ethnically diverse engineering classrooms. The growing attention and resources being committed to diversity and inclusion issues (Lichtenstein, Chen, Smith, & Maldonado, 2014; McKenna, Dalal, Anderson, & Ta, 2018; NRC, 2009) underscore the importance of understanding teachers’ experiences with complementary research-based recommendations for how to implement engineering curricula in racially diverse schools to engage all students. Our work examines the experiences of three high school teachers as they teach an introductory engineering course in geographically and distinctly different racially diverse schools across the nation. The study is situated in the context of a new high school level engineering education initiative called Engineering for Us All (E4USA). The National Science Foundation (NSF) funded initiative was launched in 2018 as a partnership among five universities across the nation to ‘demystify’ engineering for high school students and teachers. The program aims to create an all-inclusive high school level engineering course(s), a professional development platform, and a learning community to support student pathways to higher education institutions. An introductory engineering course was developed and professional development was provided to nine high school teachers to instruct and assess engineering learning during the first year of the project. This study investigates participating teachers’ implementation of the course in high schools across the nation to understand the extent to which their experiences vary as a function of student demographic (race, ethnicity, socioeconomic status) and resource level of the school itself. Analysis of these experiences was undertaken using a collective case-study approach (Creswell, 2013) involving in-depth analysis of a limited number of cases “to focus on fewer "subjects," but more "variables" within each subject” (Campbell & Ahrens, 1998, p. 541). This study will document distinct experiences of high school teachers as they teach the E4USA curriculum. Participants were purposively sampled for the cases in order to gather an information-rich data set (Creswell, 2013). The study focuses on three of the nine teachers participating in the first cohort to implement the E4USA curriculum. Teachers were purposefully selected because of the demographic makeup of their students. The participating teachers teach in Arizona, Maryland and Tennessee with predominantly Hispanic, African-American, and Caucasian student bodies, respectively. To better understand similarities and differences among teaching experiences of these teachers, a rich data set is collected consisting of: 1) semi-structured interviews with teachers at multiple stages during the academic year, 2) reflective journal entries shared by the teachers, and 3) multiple observations of classrooms. The interview data will be analyzed with an inductive approach outlined by Miles, Huberman, and Saldaña (2014). All teachers’ interview transcripts will be coded together to identify common themes across participants. Participants’ reflections will be analyzed similarly, seeking to characterize their experiences. Observation notes will be used to triangulate the findings. Descriptions for each case will be written emphasizing the aspects that relate to the identified themes. Finally, we will look for commonalities and differences across cases. The results section will describe the cases at the individual participant level followed by a cross-case analysis. This study takes into consideration how high school teachers’ experiences could be an important tool to gain insight into engineering education problems at the P-12 level. Each case will provide insights into how student body diversity impacts teachers’ pedagogy and experiences. The cases illustrate “multiple truths” (Arghode, 2012) with regard to high school level engineering teaching and embody diversity from the perspective of high school teachers. We will highlight themes across cases in the context of frameworks that represent teacher experience conceptualizing race, ethnicity, and diversity of students. We will also present salient features from each case that connect to potential recommendations for advancing P-12 engineering education efforts. These findings will impact how diversity support is practiced at the high school level and will demonstrate specific novel curricular and pedagogical approaches in engineering education to advance P-12 mentoring efforts. 
    more » « less