skip to main content


Title: Phenotypic and genetic introgression across a moving woodpecker hybrid zone
Abstract

In hybrid zones in which two divergent taxa come into secondary contact and interbreed, selection can maintain phenotypic diversity despite widespread genetic introgression. Red‐breasted (Sphyrapicus ruber) and red‐naped (S. nuchalis) sapsuckers meet and hybridize along a narrow contact zone that stretches from northern California to southern British Columbia. We found strong evidence for changes in the structure of this hybrid zone across time, with significant temporal shifts in allele frequencies and in the proportions of parental phenotypes across the landscape. In addition to these shifts, we found that differences in plumage predict genetic differences (R2 = 0.80), suggesting that plumage is a useful proxy for assessing ancestry. We also found a significant bimodal distribution of hybrids across the contact zone, suggesting that premating barriers may be driving reproductive isolation, perhaps as a result of assortative mating based on plumage differences. However, despite evidence of selection and strong patterns of population structure between parental samples, we found only weak patterns of genetic divergence. Using museum specimens and genomic data, this study of sapsuckers provides insight into the ways in which phenotypic and genetic structure have changed over a 40‐year period, as well as insight into the mechanisms that may contribute to the maintenance of the hybrid zone over time.

 
more » « less
NSF-PAR ID:
10461701
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Molecular Ecology
Volume:
28
Issue:
7
ISSN:
0962-1083
Page Range / eLocation ID:
p. 1692-1708
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We studied hybridization between the Black-crested and Tufted titmouse across two geographically distinct transects that differ in the timing of secondary contact by hundreds to thousands of years. We found that hybridization patterns correspond to localized hybrid swarms and that the titmouse hybrid zone is likely slowly expanding over time, a product of short post-natal dispersal distances coupled with weak or absent selection against admixture. We show the southern part of the hybrid zone located in Texas is four times wider than the northern region of hybridization in Oklahoma, which is likely due to geographic differences in hybrid zone age. Despite differences in width, most individuals in both transects are advanced-generation hybrids and backcrosses, suggesting geographically consistent hybridization dynamics. We documented a strong correlation between genotypes and plumage index, suggesting that hybridization has not yet resulted in the decoupling of plumage and genome-wide ancestry as observed in some other avian hybrid zones. Although our results suggest the ongoing expansion of the hybrid zone, the rate of expansion appears to be slow, on the scale of tens of meters a year, and it will likely take hundreds of thousands to millions of years before homogenization of the parental populations. While we did not find support for partial reproductive isolation in the hybrid zone itself, there is the possibility that ecological or sexual selection limits introgression into allopatric regions. Broadly, the results of our study highlight the value of multiple, geographically distant, transects across a hybrid zone for assessing the evolutionary dynamics of hybridizing lineages.

     
    more » « less
  2. Abstract

    Genetic introgression, allele exchange across species boundaries, is a commonly recognized feature of animal evolution. Under such a paradigm, contemporary contact zones provide first-hand insight into the geographic, phenotypic, and genetic details of introgression. Also, when mate choice phenotypes are conspicuous and variable in hybrids, contact zones provide potential insight into how sexual selection interacts with species boundary maintenance, particularly when postzygotic reproductive isolation is weak. The Habronattus americanus subgroup includes several recently evolved jumping spider species, with an estimated age of about 200,000 yr, and substantial evidence for hybridization and introgression. We explored a contact zone involving H. americanus (Keyserling, 1885) and H. kubai (Griswold, 1979) on Mount Shasta, CA, in alpine habitats that would have been unavailable (under ice) at the Last Glacial Maximum. We characterized morphological diversity within the contact zone, including the fine-scale geographic distribution of hybrid and parental individuals, and assessed genetic variation using ddRADseq data. Combined results indicate a lack of measured genomic differentiation between specimens with distinct morphologies, including individuals with phenotypes of the parental species. We identified a diverse array of hybrid morphologies, with phenotypic evidence for backcrossing, essentially forming a phenotypic bridge between parental taxa. The study area is characterized by more hybrid than parental individuals, with a significantly larger number of red-palped morphologies than white- and/or yellow-palped morphologies; the novel, white-palped phenotype is perhaps transgressive. Overall, these results contribute to a better understanding of the expected ebb and flow of lineage interactions during the early stages of speciation.

     
    more » « less
  3. Abstract

    Disentangling the effects of neutral and adaptive processes in maintaining phenotypic variation across environmental gradients is challenging in natural populations. Song sparrows (Melospiza melodia) on the California Channel Islands occupy a pronounced east‐west climate gradient within a small spatial scale, providing a unique opportunity to examine the interaction of genetic isolation (reduced gene flow) and the environment (selection) in driving variation. We used reduced representation genomic libraries to infer the role of neutral processes (drift and restricted gene flow) and divergent selection in driving variation in thermoregulatory traits with an emphasis on the mechanisms that maintain bill divergence among islands. Analyses of 22,029 neutral SNPs confirm distinct population structure by island with restricted gene flow and relatively large effective population sizes, suggesting bill differences are probably not a product of genetic drift. Instead, we found strong support for local adaptation using 3294 SNPs in differentiation‐based and environmental association analyses coupled with genome‐wide association tests. Specifically, we identified several putatively adaptive and candidate loci in or near genes involved in bill development pathways (e.g.,BMP,CaM,Wnt), confirming the highly complex and polygenic architecture underlying bill morphology. Furthermore, we found divergence in genes associated with other thermoregulatory traits (i.e., feather structure, plumage colour, and physiology). Collectively, these results suggest strong divergent selection across an island archipelago results in genomic changes in a suite of traits associated with climate adaptation over small spatial scales. Future research should move beyond studying univariate traits to better understand multidimensional responses to complex environmental conditions.

     
    more » « less
  4. Abstract

    Temporal variation is a powerful source of selection on life history strategies and functional traits in natural populations. Theory predicts that the rate and predictability of fluctuations should favor distinct strategies, ranging from phenotypic plasticity to bet-hedging, which are likely to have important consequences for species distribution patterns and their responses to environmental change. To date, we have few empirical studies that test those predictions in natural systems, and little is known about how genetic, environmental, and developmental factors interact to define the “fluctuation niche” of species in temporally variable environments. In this study, we evaluated the effects of hydrological variability on fitness and functional trait variation in three closely related plant species in the genus Lasthenia that occupy different microhabitats within vernal pool landscapes. Using a controlled greenhouse experiment, we manipulated the mean and variability in hydrological conditions by growing plants at different depths with respect to a shared water table and manipulating the magnitude of stochastic fluctuations in the water table over time. We found that all species had similarly high relative fitness above the water table, but differed in their sensitivities to water table fluctuations. Specifically, the two species from vernal pools basins, where soil moisture is controlled by a perched water table, were negatively affected by the stochasticity treatments. In contrast, a species from the upland habitat surrounding vernal pools, where stochastic precipitation events control soil moisture variation, was insensitive to experimental fluctuations in the water table. We found strong signatures of genetic, environmental (plastic), and developmental variation in four traits that can influence plant hydrological responses. Three of these traits varied across plant development and among experimental treatments in directions that aligned with constitutive differences among species, suggesting that multiple sources of variation align to facilitate phenotypic matching with the hydrological environment in Lasthenia. We found little evidence for predicted patterns of phenotypic plasticity and bet-hedging in species and traits from predictable and stochastic environments, respectively. We propose that selection for developmental shifts in the hydrological traits of Lasthenia species has reduced or modified selection for plasticity at any given stage of development. Collectively, these results suggest that variation in species’ sensitivities to hydrological stochasticity may explain why vernal pool Lasthenia species do not occur in upland habitat, and that all three species integrate genetic, environmental, and developmental information to manage the unique patterns of temporal hydrological variation in their respective microhabitats.

     
    more » « less
  5. Abstract

    Hybrid zones can be studied by modeling clines of trait variation (e.g., morphology, genetics) over a linear transect. Yet, hybrid zones can also be spatially complex, can shift over time, and can even lead to the formation of hybrid lineages with the right combination of dispersal and vicariance. We reassessed Sibley’s (1950) gradient between Collared Towhee (Pipilo ocai) and Spotted Towhee (Pipilo maculatus) in Central Mexico to test whether it conformed to a typical tension-zone cline model. By comparing historical and modern data, we found that cline centers for genetic and phenotypic traits have not shifted over the course of 70 years. This equilibrium suggests that secondary contact between these species, which originally diverged over 2 million years ago, likely dates to the Pleistocene. Given the amount of mtDNA divergence, parental ends of the cline have very low autosomal nuclear differentiation (FST = 0.12). Dramatic and coincident cline shifts in mtDNA and throat color suggest the possibility of sexual selection as a factor in differential introgression, while a contrasting cline shift in green back color hints at a role for natural selection. Supporting the idea of a continuum between clinal variation and hybrid lineage formation, the towhee gradient can be analyzed as one population under isolation-by-distance, as a two-population cline, and as three lineages experiencing divergence with gene flow. In the middle of the gradient, a hybrid lineage has become partly isolated, likely due to forested habitat shrinking and fragmenting as it moved upslope after the last glacial maximum and a stark environmental transition. This towhee system offers a window into the potential outcomes of hybridization across a dynamic landscape including the creation of novel genomic and phenotypic combinations and incipient hybrid lineages.

     
    more » « less