skip to main content


Title: The setup and relaxation of spring upwelling in a deep, rotationally influenced lake
Abstract

Strong and sustained winds can drive dramatic hydrodynamic responses in density‐stratified lakes, with the associated transport and mixing impacting water quality, ecosystem function, and the stratification itself. Analytical expressions offer insight into the dynamics of stratified lakes during severe wind events. However, it can be difficult to predict the aggregate response of a natural system to the superposition of hydrodynamic phenomena in the presence of complex bathymetry and when forced by variable wind patterns. Using an array of current, temperature, and water quality measurements at the upwind shore, we detail the hydrodynamic response of deep, rotationally influenced Lake Tahoe to three strong wind events during late spring. Sustained southwesterly winds in excess of 10 m s−1drove upwelling at the upwind shore (characteristic of non‐rotational upwelling setup), with upward excursions of deep water exceeding 70 m for the strongest event. Hypolimnetic water, with elevated concentrations of chlorophyllaand nitrate, was advected toward the nearshore, but this water rapidly returned to depth with the relaxation of upwelling after the winds subsided. The relaxation of upwelling exhibited rotational influence, highlighted by an along‐shore, cyclonic front characteristic of a Kelvin wave‐driven coastal jet, with velocities exceeding 25 cm s−1. The rotational front also produced downwelling to 100 m, transporting dissolved oxygen to depth. More complex internal wave features followed the passage of these powerful internal waves. Results emphasize the complexity of these superimposed hydrodynamic phenomena in natural systems, providing a conceptual reference for the role upwelling events may play in lake ecosystems.

 
more » « less
NSF-PAR ID:
10452598
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography
Volume:
66
Issue:
4
ISSN:
0024-3590
Page Range / eLocation ID:
p. 1168-1189
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    After a relaxation of the regional southward, upwelling‐favorable winds along the central California coast, warm water from the Santa Barbara Channel propagates northward as a buoyant plume. As the plume transits up the coast, it causes abrupt temperature changes and modifies shelf stratification. We use temperature and velocity data from 35 moorings north of Pt. Arguello to track the evolution of a buoyant plume after a wind relaxation event in October 2017. The moorings were deployed September–October 2017 and span a ∼30 km stretch of coastline, including nine cross‐shelf transects that range from 17 to 100 m water depth. The high spatial resolution of the data set enables us to track the spatiotemporal evolution of the plume, including across‐front temperature difference, cross‐shore structure, and propagation velocity. We observe an alongshore current velocity signal that takes ∼10 hr to propagate ∼25 km alongshore (∼0.7 m/s) and a temperature signal that takes ∼34 hr to propagate the same distance (∼0.2 m/s). The plume cools as it transits northward, leading to a decrease in the cross‐front temperature difference and the reduced gravity (g’). The plume’s propagation velocity is nonuniform in space and time, with accelerations and decelerations unexplained by the alongshore reduction ing’or advection by tidal currents. As the plume reaches the northernmost part of the mooring array, its temperature variability is obscured by internal waves, a prominent feature in the region. We focus on one relaxation event but observe five other similar events over the 2 months record.

     
    more » « less
  2. Abstract

    The intensity and frequency of storms are projected to increase in many regions of the world because of climate change. Storms can alter environmental conditions in many ecosystems. In lakes and reservoirs, storms can reduce epilimnetic temperatures from wind‐induced mixing with colder hypolimnetic waters, direct precipitation to the lake's surface, and watershed runoff. We analyzed 18 long‐term and high‐frequency lake datasets from 11 countries to assess the magnitude of wind‐ vs. rainstorm‐induced changes in epilimnetic temperature. We found small day‐to‐day epilimnetic temperature decreases in response to strong wind and heavy rain during stratified conditions. Day‐to‐day epilimnetic temperature decreased, on average, by 0.28°C during the strongest windstorms (storm mean daily wind speed among lakes: 6.7 ± 2.7 m s−1, 1 SD) and by 0.15°C after the heaviest rainstorms (storm mean daily rainfall: 21.3 ± 9.0 mm). The largest decreases in epilimnetic temperature were observed ≥2 d after sustained strong wind or heavy rain (top 5thpercentile of wind and rain events for each lake) in shallow and medium‐depth lakes. The smallest decreases occurred in deep lakes. Epilimnetic temperature change from windstorms, but not rainstorms, was negatively correlated with maximum lake depth. However, even the largest storm‐induced mean epilimnetic temperature decreases were typically <2°C. Day‐to‐day temperature change, in the absence of storms, often exceeded storm‐induced temperature changes. Because storm‐induced temperature changes to lake surface waters were minimal, changes in other limnological variables (e.g., nutrient concentrations or light) from storms may have larger impacts on biological communities than temperature changes.

     
    more » « less
  3. Abstract

    A comprehensive understanding of lake circulation is fundamental to inform better management of ecological issues and fishery resources in the Great Lakes. In this study, a high‐resolution, wave‐current coupled, three‐dimensional modeling system was applied to investigate the monthly and episodic dynamics of summer circulation in Lake Michigan. Model sensitivities to three wind sources and two grid resolutions against observed current velocities, water temperatures, and significant wave heights in the summer of 2014 were examined. Model performance was validated with additional satellite imageries and current measurements in the summer of 2015. Results indicated that the high‐resolution model driven by the observation‐based winds reproduced lake dynamics most reasonably. In July 2014, a pair of monthly averaged anticyclonic (i.e., clockwise) gyres in the surface layer were simulated in southern Lake Michigan. Analysis indicates that they originate from the wind‐driven, upwelling‐favorable, jet‐like Ekman currents along the west shore, which are connected by the density‐driven basin‐scale circulation. Although river inputs, strait exchanges, waves, grid resolutions, and bathymetric variations influence the monthly surface circulation, their effects are less important than the wind and density‐driven currents. Additional simulations support the predominant impacts of wind and density‐driven currents on lake surface circulation during a strong wind event. Further investigations suggest that lake circulation varies from surface to bottom layers, and this knowledge is significant to the related ecological issues and fishery resources management. The numerical model configured to Lake Michigan is beneficial to understanding dynamics in the Great Lakes system and other large water bodies.

     
    more » « less
  4. Abstract

    Large-amplitude internal solitary wave (ISW) shoaling, breaking, and run-up was tracked continuously by a dense and rapidly sampling array spanning depths from 500 m to shore near Dongsha Atoll in the South China Sea. Incident ISW amplitudes ranged between 78 and 146 m with propagation speeds between 1.40 and 2.38 m s−1. The ratio between wave amplitude and a critical amplitudeA0controlled breaking type and was related to wave speedcpand depth. Fissioning ISWs generated larger trailing elevation waves when the thermocline was deep and evolved into onshore propagating bores in depths near 100 m. Collapsing ISWs contained significant mixing and little upslope bore propagation. Bores contained significant onshore near-bottom kinetic and potential energy flux and significant offshore rundown and relaxation phases before and after the bore front passage, respectively. Bores on the shallow forereef drove bottom temperature variation in excess of 10°C and near-bottom cross-shore currents in excess of 0.4 m s−1. Bores decelerated upslope, consistent with upslope two-layer gravity current theory, though run-up extentXrwas offshore of the predicted gravity current location. Background stratification affected the bore run-up, withXrfarther offshore when the Korteweg–de Vries nonlinearity coefficientαwas negative. Fronts associated with the shoaling local internal tide, but equal in magnitude to the soliton-generated bores, were observed onshore of 20-m depth.

     
    more » « less
  5. Abstract

    Lakes set in arctic permafrost landscapes can be susceptible to rapid drainage and downstream flood generation. Of many thousands of lakes in northern Alaska, hundreds have been identified as having high drainage potential directly to river systems and 18 such drainage events have been documented since 1955. In 2018 we began monitoring a large lake with high drainage potential as part of a long‐term hydrological observation network designed to evaluate impacts of land use and climate change. In early June 2022, surface water was observed flowing over a 30‐m wide bluff, with active headward erosion of ice‐rich permafrost soils apparent by late June. This overflow point breached rapidly in early July, draining almost the entire lake within 12 h and generating a 191 m3/s flood to a downstream creek. Water level and turbidity sensors and time‐lapse cameras captured this rapid lake‐drainage event at high resolution. A wind‐driven surface seiche and warming waters following ice‐out helped trigger the initial thermomechanical breach. We estimate at least 600 MT of lake sediment was eroded, mobilized, and transported downstream. A flood wave peaking at 42 m3/s arrived 14 h after the initial breach at a river gauge 9‐km downstream. Comparing this event with three other quantified arctic lake‐drainage floods suggests that lake surface area coupled with drainage gradient height can predict outburst flood magnitude. Using this relationship we estimated future flood hazards from the 146 lakes in the Arctic Coastal Plain of northern Alaska (ACP) with high drainage potential, of which 20% are expected to generate outburst floods exceeding 100 m3/s to downstream rivers. This fortunate and detailed drainage‐event observation adds to a growing body of research on the impact of lakes on arctic hydrology, hazard forecasting in a region with an increasing human footprint, and broader processes of landscape evolution in arctic lowlands.

     
    more » « less