Abstract The fabrication of three-dimensional (3D) microscale structures is critical for many applications, including strong and lightweight material development, medical device fabrication, microrobotics, and photonic applications. While 3D microfabrication has seen progress over the past decades, complex multicomponent integration with small or hierarchical feature sizes is still a challenge. In this study, an optical positioning and linking (OPAL) platform based on optical tweezers is used to precisely fabricate 3D microstructures from two types of micron-scale building blocks linked by biochemical interactions. A computer-controlled interface with rapid on-the-fly automated recalibration routines maintains accuracy even after placing many building blocks. OPAL achieves a 60-nm positional accuracy by optimizing the molecular functionalization and laser power. A two-component structure consisting of 448 1-µm building blocks is assembled, representing the largest number of building blocks used to date in 3D optical tweezer microassembly. Although optical tweezers have previously been used for microfabrication, those results were generally restricted to single-material structures composed of a relatively small number of larger-sized building blocks, with little discussion of critical process parameters. It is anticipated that OPAL will enable the assembly, augmentation, and repair of microstructures composed of specialty micro/nanomaterial building blocks to be used in new photonic, microfluidic, and biomedical devices.
more »
« less
Modular Assembly of Mechanoresponsive Color‐Changing Materials from Hydrogel‐Based Photonic Crystal Microspheres
Mechanoresponsive, soft, photonic materials with tunable structural coloration represent a class of materials that have potential benefits for a wide range of applications. While many lab‐scale fabrication approaches afford control over the nano‐ and microscale morphology of these materials, upscaling their manufacture remains a challenge. Herein, a scalable fabrication concept is proposed that centers on the modular assembly of color‐changing materials from microscale building blocks. The building blocks consist of hydrogel‐based spherical photonic crystals. They are formed through a water‐in‐oil emulsification of nanoscale colloidal particles suspended in the aqueous phase. Once formed, the photonic crystal microspheres are then assembled into macroscale photonic materials, such as stretchable fibers or sheets. The resulting materials respond to a mechanical deformation with a reversible, dynamic change in color. Fabricated via a scalable, modular‐assembly approach, these mechanoresponsive photonic fibers and sheets, in turn, form a valuable building block for sensing systems or visual communication in healthcare, architecture, and consumer product design.
more »
« less
- Award ID(s):
- 1804241
- PAR ID:
- 10305211
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Photonics Research
- Volume:
- 3
- Issue:
- 1
- ISSN:
- 2699-9293
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We report simulation studies on the self-assembly of hard-lobed particles (patchy particles where patches appear as lobes around a seed) of different shapes and show that various types of self-assembled morphologies can be achieved by tuning inter-lobe interactions. On self-assembly, the linear building blocks having two lobes around the seed formed rings, the trigonal planar building blocks formed cylindrical hollow tubes and two-dimensional sheets, and the square planar building blocks formed spherical clathrates. The tetrahedral, trigonal bipyramidal, and the octahedral-shaped particles formed compact porous crystalline structures which are constituted by either hexagonal close packed or face centered cubic lattices. The pore size distributions revealed that linear, trigonal planar, and square planar building blocks create highly porous self-assembled structures. Our results suggest that these self-assembled morphologies will potentially find applications in tissue engineering, host-guest chemistry, adsorption, and catalysis.more » « less
-
Abstract Thin polymeric films are being explored for biomedical uses such as drug delivery, biofiltration, biosensors, and tissue regeneration. Of specific interest is the formation of mechanically flexible sheets, which can be formed with controllable thickness for sealing wounds, or as biomimetic cellular constructs. Flexible substrates with precise micro‐ and nanopatterns can function as supports for cell growth with conformal contact at the biointerface. To date, approaches to form free‐standing, thin sheets are limited in the ability to present patterned architectures and micro/nanotextured surfaces. Other materials have a lack of degradability, precluding their application as cellular scaffolds. An approach is suggested using biocompatible and biodegradable films fabricated from silk fibroin. This work presents the fabrication and characterization of flexible, micropatterned, and biodegradable 2D fibroin sheets for cell adhesion and proliferation. A facile and scalable technique using photolithography is shown to fabricate optically transparent, strong, and flexible fibroin substrates with tunable and precise micropatterns over large areas. By controlling the surface architectures, the control of cell adhesion and spreading can be observed. Additionally, the base material is fully degradable via proteolysis. Through mechanical control and directing the adherent cells, it is possible to explore interactions of cells and the microscale geometric topography.more » « less
-
Abstract Reconfigurability of photonic integrated circuits (PICs) has become increasingly important due to the growing demands for electronic–photonic systems on a chip driven by emerging applications, including neuromorphic computing, quantum information, and microwave photonics. Success in these fields usually requires highly scalable photonic switching units as essential building blocks. Current photonic switches, however, mainly rely on materials with weak, volatile thermo‐optic or electro‐optic modulation effects, resulting in large footprints and high energy consumption. As a promising alternative, chalcogenide phase‐change materials (PCMs) exhibit strong optical modulation in a static, self‐holding fashion, but the scalability of present PCM‐integrated photonic applications is still limited by the poor optical or electrical actuation approaches. Here, with phase transitions actuated by in situ silicon PIN diode heaters, scalable nonvolatile electrically reconfigurable photonic switches using PCM‐clad silicon waveguides and microring resonators are demonstrated. As a result, intrinsically compact and energy‐efficient switching units operated with low driving voltages, near‐zero additional loss, and reversible switching with high endurance are obtained in a complementary metal‐oxide‐semiconductor (CMOS)‐compatible process. This work can potentially enable very large‐scale CMOS‐integrated programmable electronic–photonic systems such as optical neural networks and general‐purpose integrated photonic processors.more » « less
-
Abstract Photonic crystals (PCs) constructed from colloidal building blocks have attracted increasing attention because their brilliant structural colors may find broad applications in paints, sensors, displays, and security devices. However, producing high‐quality structural colors on flexible substrates such as textiles in an efficient and scalable manner remains a challenge. Here a robust and ultrafast approach to produce industrial‐scale colloidal PCs by the shear‐induced assembly of liquid colloidal crystals of polystyrene beads pre‐formed spontaneously over a critical volume fraction is demonstrated. The pre‐crystallization of colloidal crystals allows their efficient assembly into large‐scale PCs on flexible fabric substrates under shear force. Further, by programming the wettability of the fabric substrate with hydrophilic–hydrophobic regions, this shear‐based assembly strategy can conveniently generate pre‐designed patterns of complex structural colors. This assembly strategy brings structural coloration to flexible fabrics at a scale suitable for commercial applications; therefore, it holds the potential to revolutionize the coloration technology in the textile industry.more » « less
An official website of the United States government
