The human body exhibits complex, spatially distributed chemo-electro-mechanical processes that must be properly captured for emerging applications in virtual/augmented reality, precision health, activity monitoring, bionics, and more. A key factor in enabling such applications involves the seamless integration of multipurpose wearable sensors across the human body in different environments, spanning from indoor settings to outdoor landscapes. Here, we report a versatile epidermal body area network ecosystem that enables wireless power and data transmission to and from battery-free wearable sensors with continuous functionality from dry to underwater settings. This is achieved through an artificial near field propagation across the chain of biocompatible, magneto-inductive metamaterials in the form of stretchable waterborne skin patches—these are fully compatible with pre-existing consumer electronics. Our approach offers uninterrupted, self-powered communication for human status monitoring in harsh environments where traditional wireless solutions (such as Bluetooth, Wi-Fi or cellular) are unable to communicate reliably.
Wearable wireless passive sensors are powerful potential building blocks of modern body area networks. However, these sensors are often hampered by numerous issues including restrictive read‐out distances due to near‐field coupling, fundamental tradeoffs in size/spectral performance, and unreliable sensor tracking during activity. Here, to overcome such issues implementing wearable sensing systems exhibiting coupled magnetic resonances are demonstrated. This approach is utilized to augment wireless telemetry from fully wearable, passive (zero electronics) resonator chains. Secondary receiver coils are integrated into fabric or skin to facilitate augmented read‐out from epidermal sweat, moisture, or pressure sensors—herein exhibiting enhanced read‐out range, relaxed constraints in sensor size (sensor spectral response becomes untethered from size) and reader‐sensor orientation. Unlike existing schemes, this readout method enables decoupled co‐readout of the sensor's distance and status, employed here for co‐measurement with human respiration. This type of decoupled readout can help compensate for movements that are so common in wearable monitoring. Simple to implement and requiring no microelectronics, this scheme streamlines into existing, body‐worn passive wireless telemetric systems with minimal modification.
more » « less- NSF-PAR ID:
- 10452718
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials Technologies
- Volume:
- 6
- Issue:
- 4
- ISSN:
- 2365-709X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Wearable electroenzymatic sensors enable monitoring of clinically informative biomolecules in epidermally retrievable biofluids. Conventional wearable enzymatic sensors utilize Prussian Blue (a redox mediator) to achieve selectivity against electroactive interferents. However, the use of Prussian Blue presents fundamental challenges including: 1) the susceptibility of the sensor response to dynamic concentration variation of ionic species and 2) the poor operational stability due to the degradation of its framework. As an alternative wearable electroenzymatic sensor development methodology to bypass the aforementioned limitations, a mediator‐free sensing interface is devised, comprising of a coupled platinum nanoparticle/multiwall carbon nanotube layer and a permselective membrane. The interface is adapted to develop sensors targeting glucose, lactate, and choline (as examples of informative metabolites and nutrients), showing high degrees of sensitivity, selectivity (against a wide panel of naturally present and diverse interfering species), stability (<6.5% signal drift over 20 h operation), and reliability of sensing operation in sweat samples. By integration within a readout board, a wireless sample‐to‐answer system is realized for on‐body sweat biomarker analysis. This methodology can be adapted to target a wide panel of biomarkers in various biofluids, introducing a new sensor development direction for personal health monitoring.
-
Conventional catheter- or probe-based in vivo biomedical sensing is uncomfortable, inconvenient, and sometimes infeasible for longterm monitoring. Existing implantable sensors often require an invasive procedure for sensor placement. Untethered soft robots with the capability to deliver the sensor to the desired monitoring point hold great promise for minimally invasive biomedical sensing. Inspired by the locomotion modes of snakes, we present here a soft kirigami robot for sensor deployment and real-time wireless sensing. The locomotion mechanism of the soft robot is achieved by kirigami patterns that offer asymmetric tribological properties that mimic the skin of the snake. The robot exhibits good deployability, excellent load capacity (up to 150 times its own weight), high-speed locomotion (0.25 body length per step), and wide environmental adaptability with multimodal movements (obstacle crossing, locomotion in wet and dry conditions, climbing, and inverted crawling). When integrated with passive sensors, the versatile soft robot can locomote inside the human body, deliver the passive sensor to the desired location, and hold the sensor in place for real-time monitoring in a minimally invasive manner. The proof-of-concept prototype demonstrates that the platform can perform real-time impedance monitoring for the diagnosis of gastroesophageal reflux disease.more » « less
-
null (Ed.)Scalable, high-density electronic skins (e-skins) are a desirable goal of tactile sensing. However, a realization of this goal has been elusive due to the trade-off between spatial and temporal resolution that current tactile sensors suffer from. Additionally, as tactile sensing grids become large, wiring becomes unmanageable, and there is a need for a wireless approach. In this work, a scalable, event-based, passive tactilesensing system is proposed that is based on radio-frequency identification (RFID) technology. An RFID-based tactile sensing hand is developed with 19 pressure sensing taxels. The taxels are read wirelessly using a single ‘hand-shaped’ RFID antenna. Each RFID tag is transformed into a pressure sensor by disconnecting the RFID chip from its antenna and embedding the chip and antenna into soft elastomer with an air gap introduced between the RFID chip and its antenna. When a pressure event occurs, the RFID chip contacts its antenna and receives power and communicates with the RFID reader. Thus, the sensor is transformed into a biomimetic event-based sensor, whose response is activated only when used. Further, this work demonstrates the feasibility of constructing event-based, passive sensing grids that can be read wirelessly. Future tactile sensing e-skins can utilize this approach to become scalable and dense, while retaining high temporal resolution. Moreover, this approach can be applied beyond tactile sensing, for the development of scalable and high-density sensors of any modality.more » « less
-
Abstract Nutrition measurement has broad applications in science, ranging from dietary assessment, to food monitoring, personalized health, and more. Despite its importance, there are currently no tools that offer continuous cotracking of nutrients direct from food. In this study, the multiscale engineering of silk biopolymer‐interlayer sensors is reported for comonitoring of nutrients. By manipulating various nano‐ to mesostructural properties of such biosensors, sensors are obtained with programmable sensitivity and selectivity to salts, sugars, and oils/fats. Notably, this approach requires no specialized nanomaterials or delicate biomolecules. Programmable biosensors are further formatted for wireless readout and characteristics of these passive, wireless nutrient monitors are studied in vitro. As a proof of concept, the discrimination and comonitoring of salt, sugar, and fat content direct from real, complex foods such as milk, meat, soup, and tea drinks are demonstrated. It is anticipated that such sensors can be utilized in emerging dietary tools for applications across food tracking and human health. In addition, such strategies are expected in structural engineering of sensors to be adaptable to existing or emerging selective or partially selective sensors.