The precipitation of calcium carbonate (CaCO3) is a key mechanism in carbon capture applications relying on mineralization. In that regard, Ca-rich cementitious binders offer a unique opportunity to act as a large-scale carbon sink by immobilizing CO2 as calcium carbonate by mineralization. However, the atomistic mechanism of calcium carbonate formation is still not fully understood. Here, we study the atomic scale nucleation mechanism of an early stage amorphous CaCO3 gel based on reactive molecular dynamics (MD) simulations. We observe that reactive MD offers a notably improved description of this reaction as compared to classical MD, which allows us to reveal new insights into the structure of amorphous calcium carbonate gels and formation kinetics thereof.
more »
« less
This content will become publicly available on June 21, 2025
Effects of temperature and CO2 concentration on the early stage nucleation of calcium carbonate by reactive molecular dynamics simulations
It is significant to investigate the calcium carbonate (CaCO3) precipitation mechanism during the carbon capture process; nevertheless, CaCO3 precipitation is not clearly understood yet. Understanding the carbonation mechanism at the atomic level can contribute to the mineralization capture and utilization of carbon dioxide, as well as the development of new cementitious materials with high-performance. There are many factors, such as temperature and CO2 concentration, that can influence the carbonation reaction. In order to achieve better carbonation efficiency, the reaction conditions of carbonation should be fully verified. Therefore, based on molecular dynamics simulations, this paper investigates the atomic-scale mechanism of carbonation. We investigate the effect of carbonation factors, including temperature and concentration, on the kinetics of carbonation (polymerization rate and activation energy), the early nucleation of calcium carbonate, etc. Then, we analyze the local stresses of atoms to reveal the driving force of early stage carbonate nucleation and the reasons for the evolution of polymerization rate and activation energy. Results show that the higher the calcium concentration or temperature, the higher the polymerization rate of calcium carbonate. In addition, the activation energies of the carbonation reaction increase with the decrease in calcium concentrations.
more »
« less
- Award ID(s):
- 1922167
- PAR ID:
- 10579757
- Publisher / Repository:
- AIP
- Date Published:
- Journal Name:
- The Journal of Chemical Physics
- Volume:
- 160
- Issue:
- 23
- ISSN:
- 0021-9606
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Although calcium carbonate (CaCO3) precipitation plays an important role in nature, its mechanism remains only partially understood. Further understanding the atomic driving force behind the CaCO3 precipitation could be key to facilitate the capture, immobilization, and utilization of CO2 by mineralization. Here, based on molecular dynamics simulations, we investigate the mechanism of the early-stage nucleation of an amorphous calcium carbonate gel. We show that the gelation reaction manifests itself by the formation of some calcium carbonate clusters that grow over time. Interestingly, we demonstrate that the gelation reaction is driven by the existence of some competing local molecular stresses within the Ca and C precursors, which progressively get released upon gelation. This internal molecular stress is found to originate from the significantly different local coordination environments exhibited by Ca and C atoms. These results highlight the key role played by the local stress acting within the atomic network in governing gelation reactions.more » « less
-
Carbonatable binders have received extensive attention in recent years because of their potential to absorb environmental carbon dioxide (CO2) to form stable, durable, and environmentally friendly carbonate materials. However, the expanded use of these eco-friendly materials is still staggered due to their fundamental limitations (i.e., chemical and physical reaction barriers). This paper addresses the depth-dependent limitation of the external CO2 curing process using impregnated hydrogels for carbonated cementitious materials (CCMs). The CCMs with enzymatic solution-impregnated hydrogels in the presence of external CO2 have better mechanical (up to 80% improvement compared to control CCMs) and durability performance, and the calcium carbonate precipitation can reach up to 15 times higher compared to control systems (approaches the maximum theoretical degree of carbonation of binder). The experimental results show that external CO2 influx acts as an accelerator of the catalytic activity of urease and promotes CaCO3 precipitation over depth. The kinetic model shows that the addition of impregnated hydrogels with enzymatic solution significantly improved the early age reaction kinetics by accelerating the nucleation and growth of carbonate crystals. The developed CO2 curing process provides a uniform carbonation profile through depth which is crucial in upscaling CCM systems. This work provides a new path for the development of high-performance carbon sink construction materials.more » « less
-
Calcium silicates are abundant, but sparingly soluble, feedstocks of interest for making low-carbon alternative cements. Under hydrothermal and alkaline conditions, they can form crystalline calcium silicate hydrate (CCSH) products, which are abundant in Roman concrete, or they can form carbonates when CO2 is present. To understand when co-precipitation of CCSH and carbonate phases is possible, we studied the hydrothermal carbonation of a model calcium silicate, pseudowollastonite (-CaSiO3), at 150ºC and high pH as a function of CO2 source (CO2(g) or Na2CO3) and different concentrations of sodium, alumina, and silica. Our experiments produced a range of CCSH phases including tobermorite – 13Å, rhodesite, and pectolite, as early as one day after the start of our experiments. About 10.7% hydrated product was observed after 7 days of curing in 2 M NaOH solution. We also observed the formation of CaCO3 as both aragonite and calcite when carbon was introduced to our experimental system. The carbon source impacted the ratio of CaCO3 to CCSH phases in the reaction products. Availability of Na2CO3 produced a balance between CaCO3 and CCSH phases whereas CO2(g) produced more CaCO3 at about 36.4% by mass at the highest. Higher concentrations of Na+ increased precipitation of both CaCO3 and/or CCSH phases. The presence of excess silica, in the form of dissolved borosilicate glass from our reaction vessels under alkaline reaction conditions, also enhanced the formation of CCSH phases formed in some experiments. Supplemental Al2O3, a common constituent in many silicate feedstocks, also enhanced CCSH formation, likely by forming aluminum substituted phases under the conditions tested here. These chemical insights can be enabling in designing formulation and curing guidelines for novel cementitious materials.more » « less
-
Abstract Portlandite (Ca(OH)2; also known as calcium hydroxide or hydrated lime), an archetypal alkaline solid, interacts with carbon dioxide (CO2) via a classic acid–base “carbonation” reaction to produce a salt (calcium carbonate: CaCO3) that functions as a low‐carbon cementation agent, and water. Herein, we revisit the effects of reaction temperature, relative humidity (RH), and CO2concentration on the carbonation of portlandite in the form of finely divided particulates and compacted monoliths. Special focus is paid to uncover the influences of the moisture state (i.e., the presence of adsorbed and/or liquid water), moisture content and the surface area‐to‐volume ratio (sa/v, mm−1) of reactants on the extent of carbonation. In general, increasing RH more significantly impacts the rate and thermodynamics of carbonation reactions, leading to high(er) conversion regardless of prior exposure history. This mitigated the effects (if any) of allegedly denser, less porous carbonate surface layers formed at lower RH. In monolithic compacts, microstructural (i.e., mass‐transfer) constraints particularly hindered the progress of carbonation due to pore blocking by liquid water in compacts with limited surface area to volume ratios. These mechanistic insights into portlandite's carbonation inform processing routes for the production of cementation agents that seek to utilize CO2borne in dilute (≤30 mol%) post‐combustion flue gas streams.more » « less