Ruddlesden–Popper perovskites (RPPs) are promising materials for optoelectronic devices. While iodide‐based RPPs are well‐studied, the crystallization of mixed‐halide RPPs remains less explored. Understanding the factors affecting their formation and crystallization are vital for optimizing morphology, phase purity, and orientation, which directly impact device performance. Here, we investigate the crystallization and properties of mixed‐halide RPPs (PEA)2FAn−1Pbn(Br1/3I2/3)3n + 1(PEA = C6H5(CH2)2NH3+and FA = CH(NH2)2+) (n = 1, 5, 10) using DMSO ((CH3)2SO) or NMP (OC4H6NCH3) as cosolvents and MACl (MA = CH3NH3+) as an additive. For the first time, the presence of planar defects in RPPs is directly observed by in situ grazing‐incidence wide‐angle X‐ray scattering (GIWAXS) and confirmed through the simulation of the patterns that matched the experimental. GIWAXS data also reveals that DMSO promotes higher crystallinity and vertical orientation, while MACl enhances crystal quality but increases halide segregation, shown here by nano X‐ray fluorescence (nano‐XRF) experiments. For low‐n RPPs, orientation is crucial for solar cell efficiency, but its impact decreases with increasing n. Our findings provide insights into optimizing mixed‐halide RPPs, guiding strategies to improve crystallization, phase control, and orientation for better performance not only in solar cells but also in other potential optoelectronic devices.
more »
« less
Materials Discovery of Stable and Nontoxic Halide Perovskite Materials for High‐Efficiency Solar Cells
Abstract Two critical limitations of organic–inorganic lead halide perovskite materials for solar cells are their poor stability in humid environments and inclusion of toxic lead. In this study, high‐throughput density functional theory (DFT) methods are used to computationally model and screen 1845 halide perovskites in search of new materials without these limitations that are promising for solar cell applications. This study focuses on finding materials that are comprised of nontoxic elements, stable in a humid operating environment, and have an optimal bandgap for one of single junction, tandem Si‐perovskite, or quantum dot–based solar cells. Single junction materials are also screened on predicted single junction photovoltaic (PV) efficiencies exceeding 22.7%, which is the current highest reported PV efficiency for halide perovskites. Generally, these methods qualitatively reproduce the properties of known promising nontoxic halide perovskites that are either experimentally evaluated or predicted from theory. From a set of 1845 materials, 15 materials pass all screening criteria for single junction cell applications, 13 of which are not previously investigated, such as (CH3NH3)0.75Cs0.25SnI3, ((NH2)2CH)Ag0.5Sb0.5Br3, CsMn0.875Fe0.125I3, ((CH3)2NH2)Ag0.5Bi0.5I3, and ((NH2)2CH)0.5Rb0.5SnI3. These materials, together with others predicted in this study, may be promising candidate materials for stable, highly efficient, and nontoxic perovskite‐based solar cells.
more »
« less
- Award ID(s):
- 1720415
- PAR ID:
- 10461669
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Functional Materials
- Volume:
- 29
- Issue:
- 23
- ISSN:
- 1616-301X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We incorporate Se into the 3D halide perovskite framework using the zwitterionic ligand: SeCYS (+NH3(CH2)2Se−), which occupies both the X−and A+sites in the prototypical ABX3perovskite. The new organoselenide‐halide perovskites: (SeCYS)PbX2(X=Cl, Br) expand upon the recently discovered organosulfide‐halide perovskites. Single‐crystal X‐ray diffraction and pair distribution function analysis reveal the average structures of the organoselenide‐halide perovskites, whereas the local lead coordination environments and their distributions were probed through solid‐state77Se and207Pb NMR, complemented by theoretical simulations. Density functional theory calculations illustrate that the band structures of (SeCYS)PbX2largely resemble those of their S analogs, with similar band dispersion patterns, yet with a considerable band gap decrease. Optical absorbance measurements indeed show band gaps of 2.07 and 1.86 eV for (SeCYS)PbX2with X=Cl and Br, respectively. We further demonstrate routes to alloying the halides (Cl, Br) and chalcogenides (S, Se) continuously tuning the band gap from 1.86 to 2.31 eV–straddling the ideal range for tandem solar cells or visible‐light photocatalysis. The comprehensive description of the average and local structures, and how they can fine‐tune the band gap and potential trap states, respectively, establishes the foundation for understanding this new perovskite family, which combines solid‐state and organo‐main‐group chemistry.more » « less
-
Abstract Tailoring the doping of semiconductors in heterojunction solar cells shows tremendous success in enhancing the performance of many types of inorganic solar cells, while it is found challenging in perovskite solar cells because of the difficulty in doping perovskites in a controllable way. Here, a small molecule of 4,4′,4″,4″′‐(pyrazine‐2,3,5,6‐tetrayl) tetrakis (N,N‐bis(4‐methoxyphenyl) aniline) (PT‐TPA) which can effectively p‐dope the surface of FAxMA1−xPbI3(FA: HC(NH2)2; MA: CH3NH3) perovskite films is reported. The intermolecular charge transfer property of PT‐TPA forms a stabilized resonance structure to accept electrons from perovskites. The doping effect increases perovskite dark conductivity and carrier concentration by up to 4737 times. Computation shows that electrons in the first two layers of octahedral cages in perovskites are transferred to PT‐TPA. After applying PT‐TPA into perovskite solar cells, the doping‐induced band bending in perovskite effectively facilitates hole extraction to hole transport layer and expels electrons toward cathode side, which reduces the charge recombination there. The optimized devices demonstrate an increased photovoltage from 1.12 to 1.17 V and an efficiency of 23.4% from photocurrent scanning with a stabilized efficiency of 22.9%. The findings demonstrate that molecular doping is an effective route to control the interfacial charge recombination in perovskite solar cells which is in complimentary to broadly applied defect passivation techniques.more » « less
-
Tin halide perovskites are among the candidates for replacing lead-based ones for less toxicity and comparable optical properties. However, stability remains a challenge due to the easier oxidation of Sn 2+ than Pb 2+ . Here, for the first time, we applied the ligand-assisted reprecipitation method to synthesize CH(NH 2 ) 2 SnI 3 (FASnI 3 ) orthorhombic perovskite nanocrystals with an average diameter of 7.7 nm and a photoluminescence emission at 825 [Formula: see text] 2 nm (1.5 eV). The influence of synthesis parameters, including precursor solvent, precipitation media, temperature, and time on optical properties of nanocrystals, was studied. By incorporating SnF 2 , the stability of the nanocrystals was improved, and the oxidation from FASnI 3 to FA 2 SnI 6 was significantly delayed, which was quantitively demonstrated and confirmed by observing the characteristic diffraction peaks of the perovskite phase using x-ray diffraction at various exposure time to air. The addition of SnF 2 is optimized to be 6%. The FASnI 3 nanocrystals stayed stable for at least 265 days under N 2 storage at room temperature and relative humidity of 20%.more » « less
-
Abstract The phase stability of mixed halide perovskites plays a vital role in the performance and reliability of perovskite-based devices and systems. In this work, we incorporate the contribution of the strain energy due to the size mismatch of halideions in Gibbs free energy for the analysis of the phase stability of mixed halide perovskites. Analytical expressions of the chemical potentials of halide ions in mixed halide perovskites are derived and used to determine the critical atomic fractions of halide ions for the presence of spinodal decomposition (phase instability). The numerical analysis of CH3NH3PbIxBr3-xmixed halide perovskite reveals the important role of the mismatch strain from halide ions in controlling the phase instability of mixed halide perovskite, i.e., increasing the mismatch strain widens the range ofxfor the phase separation of mixed halide perovskites. To mitigate the phase instability associated with the strain energy from intrinsic size mismatch and/or light-induced expansion, strain and/or field engineering, such as high pressure, can be likely applied to introduce strain and/or field gradient to counterbalance the strain gradient by the mismatch strain and/or light-induced expansion.more » « less
An official website of the United States government
