skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: In Situ Observations of the Diurnal Variation in the Boundary Layer of Mature Hurricanes
Abstract Recent studies have suggested that the structure of tropical cyclones (TCs), especially the upper‐level clouds as indicated by satellite infrared brightness temperatures and precipitation, fluctuates with the diurnal cycle. The diurnal cycle of the low‐level structure, including the boundary layer, has not yet been investigated with observations. This study analyzes data from 2242 GPS dropsondes collected in mature hurricanes to investigate the diurnal variation of the mean boundary layer structure. A composite analysis is conducted to compare the kinematic and thermodynamic structure during nighttime (0–6 local time) vs in the afternoon (12–18 local time). The composites show that much stronger inflow occurs during nighttime and the moist entropy is also larger than that in the daytime. Grouping the dropsonde data into 6‐h time windows relative to the local time shows a clear diurnal signal of boundary layer inflow. The amplitude of the diurnal signal is largest at a radius of 250–500 km.  more » « less
Award ID(s):
1654831
PAR ID:
10452850
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
47
Issue:
3
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Several years of moored turbulence measurements fromχpods at three sites in the equatorial cold tongues of Atlantic and Pacific Oceans yield new insights into proxy estimates of turbulence that specifically target the cold tongues. They also reveal previously unknown wind dependencies of diurnally varying turbulence in the near-critical stratified shear layers beneath the mixed layer and above the core of the Equatorial Undercurrent that we have come to understand as deep cycle (DC) turbulence. Isolated by the mixed layer above, the DC layer is only indirectly linked to surface forcing. Yet, it varies diurnally in concert with daily changes in heating/cooling. Diurnal composites computed from 10-min averaged data at fixedχpod depths show that transitions from daytime to nighttime mixing regimes are increasingly delayed with weakening wind stressτ. These transitions are also delayed with respect to depth such that they follow a descent rate of roughly 6 m h−1, independent ofτ. We hypothesize that this wind-dependent delay is a direct result of wind-dependent diurnal warm layer deepening, which acts as the trigger to DC layer instability by bringing shear from the surface downward but at rates much slower than 6 m h−1. This delay in initiation of DC layer instability contributes to a reduction in daily averaged values of turbulence dissipation. Both the absence of descending turbulence in the sheared DC layer prior to arrival of the diurnal warm layer shear and the magnitude of the subsequent descent rate after arrival are roughly predicted by laboratory experiments on entrainment in stratified shear flows. Significance StatementOnly recently have long time series measurements of ocean turbulence been available anywhere. Important sites for these measurements are the equatorial cold tongues where the nature of upper-ocean turbulence differs from that in most of the world’s oceans and where heat uptake from the atmosphere is concentrated. Critical to heat transported downward from the mixed layer is the diurnally varying deep cycle of turbulence below the mixed layer and above the core of the Equatorial Undercurrent. Even though this layer does not directly contact the surface, here we show the influence of the surface winds on both the magnitude of the deep cycle turbulence and the timing of its descent into the depths below. 
    more » « less
  2. Abstract This study describes a new mechanism governing the diurnal variation of vertical motion in tropical oceanic heavy rainfall zones, such as the intertropical convergence zone. In such regions, the diurnal heating of widespread anvil clouds due to shortwave radiative absorption enhances upward motion in these upper layers in the afternoon. This radiatively driven ascent promotes an afternoon maximum of anvil clouds, indicating a diurnal cloud‐radiative feedback. The opposite occurs at nighttime: While rainfall exhibits a dominant peak at night‐early morning, the boundary layer rooted upward motion and latent heating tied to this peak are forced to be more bottom heavy by the nighttime anomalous radiative cooling at upper levels. This mechanism therefore favors the stratiform top‐heavy heating mode during daytime and suppresses it nocturnally. These diurnal circulation signatures arise from microphysical‐radiative feedbacks that manifest on the scales of organized deep convection, which may ultimately impact the daily mean radiation budget. 
    more » « less
  3. Abstract The properties of diurnal variability in tropical cyclones (TCs) and the mechanisms behind them remain an intriguing aspect of TC research. This study provides a comprehensive analysis of diurnal variability in two simulations of TCs to explore these mechanisms. One simulation is a well-known Hurricane Nature Run (HNR1), which is a realistic simulation of a TC produced using the Weather Research and Forecasting (WRF) Model. The other simulation is a realistic simulation produced using WRF of Hurricane Florence (2018) using hourly ERA5 data as input. Empirical orthogonal functions and Fourier filtering are used to analyze diurnal variability in the TCs. In both simulations a diurnal squall forms at sunrise in the inner core and propagates radially outward and intensifies until midday. At midday the upper-level outflow strengthens, surface inflow weakens, and the cirrus canopy reaches its maximum height and radial extent. At sunset and overnight, the surface inflow is stronger, and convection inside the RMW peaks. Therefore, two diurnal cycles of convection exist in the TCs with different phases of maxima: eyewall convection at sunset and at night, and rainband convection in the early morning. This study finds that the diurnal pulse in the cirrus canopy is not advectively driven, nor can it be attributed to weaker inertial stability at night; rather, the results indicate direct solar heating as a mechanism for cirrus canopy lifting and enhanced daytime outflow. These results show a strong diurnal modulation of tropical cyclone structure, and are consistent with other recent observational and modeling studies of the TC diurnal cycle. 
    more » « less
  4. Abstract Roll vortices are a series of large-scale turbulent eddies that nearly align with the mean wind direction and prevail in the hurricane boundary layer. In this study, the one-way nested WRF-LES model simulation results from Li et al. (J Atmos Sci 78(6):1847–1867,https://doi.org/10.1175/JAS-D-20-0270.1, 2021) are used to examine the structure and generation mechanism of roll vortices and associated coherent turbulence in the hurricane boundary layer during the landfall of Hurricane Harvey from 00 UTC 25 to 18 UTC 27 August 2017. Results indicate that roll vortices prevail in the hurricane boundary layer. The intense roll vortices and associated large turbulent eddies above them (at a height of ~ 200 to 3000 m) accumulate within a hurricane radius of 20–40 km. Their intensity is proportional to hurricane intensity during the simulation period. Before and during hurricane landfall, strong inflow convergence leads to horizontal advection of roll vortices throughout the entire hurricane boundary layer. Combined with the strong wind shear, the strongest roll vortices and associated large turbulent eddies are generated near the eyewall with suitable thermodynamic (Richardson number at around − 0.2 to 0.2) and dynamic conditions (strong negative inflow wind shear). After landfall, the decayed inflow weakens the inflow convergence and quickly reduces the strong roll vortices and associated large turbulent eddies. Diagnosis of vertical turbulent kinetic energy indicates that atmospheric pressure perturbation, caused by horizontal convergence, transfers the horizontal component of turbulence to the vertical component with a mean wavelength of about 1 km. The buoyancy term is weak and negative, and the large turbulent eddies are suppressed. 
    more » « less
  5. Abstract. This study examines the diurnal variation in precipitation over Hainan Island in the South China Sea using gauge observations from 1951 to 2012 and Climate Prediction Center MORPHing technique (CMORPH) satellite estimates from 2006 to 2015, as well as numerical simulations. The simulations are the first to use climatological mean initial and lateral boundary conditions to study the dynamic and thermodynamic processes (and the impacts of land–sea breeze circulations) that control the rainfall distribution and climatology. Precipitation is most significant from April to October and exhibits a strong diurnal cycle resulting from land–sea breeze circulations. More than 60% of the total annual precipitation over the island is attributable to the diurnal cycle with a significant monthly variability. The CMORPH and gauge datasets agree well, except that the CMORPH data underestimate precipitation and have a 1 h peak delay. The diurnal cycle of the rainfall and the related land– sea breeze circulations during May and June were well captured by convection-permitting numerical simulations with the Weather Research and Forecasting (WRF) model, which were initiated from a 10-year average ERA-Interim reanalysis. The simulations have a slight overestimation of rainfall amounts and a 1 h delay in peak rainfall time. The diurnal cycle of precipitation is driven by the occurrence of moist convection around noontime owing to low-level convergence associated with the sea-breeze circulations. The precipitation intensifies rapidly thereafter and peaks in the afternoon with the collisions of sea-breeze fronts from different sides of the island. Cold pools of the convective storms contribute to the inland propagation of the sea breeze. Generally, precipitation dissipates quickly in the evening due to the cooling and stabilization of the lower troposphere and decrease of boundary layer moisture. Interestingly, the rather high island orography is not a dominant factor in the diurnal variation in precipitation over the island. 
    more » « less