skip to main content


Title: Toxin tolerance across landscapes: Ecological exposure not a prerequisite
Abstract

Little is known about the tolerances of mammalian herbivores to plant specialized metabolites across landscapes.

We investigated the tolerances of two species of herbivorous woodrats,Neotoma lepida(desert woodrat) andNeotoma bryanti(Bryant's woodrat) to creosote bushLarrea tridentata, a widely distributed shrub with a highly toxic resin. Woodrats were sampled from 13 locations both with and without creosote bush across a 900 km transect in the US southwest. We tested whether these woodrat populations consume creosote bush using plant metabarcoding of faeces and quantified their tolerance to creosote bush through feeding trials using chow amended with creosote resin.

Toxin tolerance was analysed in the context of population structure across collection sites with microsatellite analyses. Genetic differentiation among woodrats collected from different locations was minimal within either species. Tolerance differed substantially between the two species, withN. lepidapersisting 20% longer thanN. bryantiin feeding trials with creosote resin. Furthermore, in both species, tolerance to creosote resin was similar among woodrats near or within creosote bush habitat. In both species, woodrats collected >25 km from creosote had markedly lower tolerances to creosote resin compared to animals from within the range of creosote bush.

The results imply that mammalian herbivores are adapted to the specialized metabolites of plants in their diet, and that this tolerance can extend several kilometres outside of the range of dietary items. That is, direct ecological exposure to the specialized chemistry of particular plant species is not a prerequisite for tolerance to these compounds. These findings lay the groundwork for additional studies to investigate the genetic mechanisms underlying toxin tolerance and to identify how these mechanisms are maintained across landscape‐level scales in mammalian herbivores.

Read the freePlain Language Summaryfor this article on the Journal blog.

 
more » « less
Award ID(s):
1656497
NSF-PAR ID:
10380740
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Functional Ecology
Volume:
36
Issue:
8
ISSN:
0269-8463
Page Range / eLocation ID:
p. 2119-2131
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Ecotones, characterized by adjacent yet distinct biotic communities, provide natural laboratories in which to investigate how environmental selection influences the ecology and evolution of organisms. For wild herbivores, differential plant availability across sharp ecotones may be an important source of dietary‐based selection.

    We studied small herbivore diet composition across a sharp ecotone where two species of woodrat,Neotoma bryantiandN.lepida, come into secondary contact with one another and hybridize. We quantified woodrat dietary preference through trnLmetabarcoding of field‐collected fecal pellets and experimental choice trials. Despite gene flow, parentalN. bryantiandN. lepidamaintain distinct diets across this fine spatial scale, and across temporal scales that span both wet and dry conditions.

    Neotoma bryantimaintained a more diverse diet, withFrangula californica(California coffeeberry) making up a large portion of its diet.Neotoma lepidamaintains a less diverse diet, withPrunus fasciculata(desert almond) comprising more than half of its diet. BothF. californicaandP. fasciculataare known to produce potentially toxic plant secondary compounds (PSCs), which should deter herbivory, yet these plants have relatively high nutritional value as measured by crude protein content.

    Neotoma bryantiandN. lepidaconsumedF. californicaandP. fasciculata, respectively, in greater abundance than these plants are available on the landscape—indicating dietary selection. Finally, experimental preference trials revealed thatN. bryantiexhibited a preference forF. californica, whileN. lepidaexhibited a relatively stronger preference forP. fasciculata. We find thatN. bryantiexhibit a generalist herbivore strategy relative toN. lepida, which exhibit a more specialized feeding strategy in this study system.

    Our results suggest that woodrats respond to fine‐scale environmental differences in plant availability that may require different metabolic strategies in order to balance nutrient acquisition while minimizing exposure to potentially toxic PSCs.

     
    more » « less
  2. Abstract

    Herbivory is common in mammals, yet our understanding of detoxification processes used by mammals to biotransform plant secondary compounds (PSCs) is limited. Specialist herbivores are thought to have evolved detoxification mechanisms that rely more heavily on energetically cheap Phase I biotransformation reactions to process high levels of PSCs in their diets. We explored this hypothesis by comparing the urinary metabolite patterns of two specialist herbivores (genusNeotoma).Neotoma stephensiis an obligate specialist on one‐seeded juniper (Juniperus monosperma).Neotoma lepidais a generalist forager across its range, yet populations in the Great Basin specialize on Utah juniper (J. osteosperma). While both juniper species have high levels of terpenes, the terpene profiles and quantities differ between the two. Individuals from both woodrat species were fed diets of each juniper in a cross‐over design. Urine, collected over a 24‐h period, was extracted and analyzed in an untargeted metabolomics approach using both GC‐MS and HPLC‐MS/MS. The obligate specialistN. stephensiexcreted a unique pattern of Phase I metabolites when fed its native juniper, whileN. lepidaexcreted a unique pattern of Phase II metabolites when fed its native juniper. Both woodrat species utilized the Phase II metabolic pathway of glucuronidation more heavily when consuming the more chemically diverseJ. osteosperma, andN. stephensiutilized less glucuronidation thanN. lepidawhen consumingJ. monosperma. These results are consistent with the hypothesis that obligate specialists may have evolved unique and efficient biotransformation mechanisms for dealing with PSCs in their diet.

     
    more » « less
  3. Abstract

    Hybridization is a common process that has broadly impacted the evolution of multicellular eukaryotes; however, how ecological factors influence this process remains poorly understood. Here, we report the findings of a 3-year recapture study of the Bryant’s woodrat (Neotoma bryanti) and desert woodrat (Neotoma lepida), two species that hybridize within a creosote bush (Larrea tridentata) shrubland in Whitewater, CA, USA. We used a genotype-by-sequencing approach to characterize the ancestry distribution of individuals across this hybrid zone coupled with Cormack–Jolly–Seber modeling to describe demography. We identified a high frequency of hybridization at this site with ~40% of individuals possessing admixed ancestry, which is the result of multigenerational backcrossing and advanced hybrid-hybrid crossing. F1, F2, and advanced generation hybrids had apparent survival rates similar to parental N. bryanti, while parental and backcross N. lepida had lower apparent survival rates and were far less abundant. Compared to bimodal hybrid zones where hybrids are often rare and selected against, we find that hybrids at Whitewater are common and have comparable survival to the dominant parental species, N. bryanti. The frequency of hybridization at Whitewater is therefore likely limited by the abundance of the less common parental species, N. lepida, rather than selection against hybrids.

     
    more » « less
  4. Abstract

    Although herbivory is widespread among mammals, few species have adopted a strategy of dietary specialization. Feeding on a single plant species often exposes herbivores to high doses of plant secondary metabolites (PSMs), which may exceed the animal's detoxification capacities. Theory predicts that specialists will have unique detoxification mechanisms to process high levels of dietary toxins. To evaluate this hypothesis, we compared liver microsomal metabolism of a juniper specialist,Neotoma stephensi(diet >85% juniper), to a generalist,N. albigula(diet ≤30% juniper). Specifically, we quantified the concentration of a key detoxification enzyme, cytochrome P450 2B (CYP2B) in liver microsomes, and the metabolism of α‐pinene, the most abundant terpene in the juniper species consumed by the specialist woodrat. In both species, a 30% juniper diet increased the total CYP2B concentration (2–3×) in microsomes and microsomal α‐pinene metabolism rates (4‐fold). InN. stephensi, higher levels of dietary juniper (60% and 100%) further induced CYP2B and increased metabolism rates of α‐pinene. Although no species‐specific differences in metabolism rates were observed at 30% dietary juniper, total microsomal CYP2B concentration was 1.7× higher inN. stephensithan inN. albigula(p < .01), suggestingN. stephensiproduces one or more variant of CYP2B that is less efficient at processing α‐pinene. InN. stephensi, the rates of α‐pinene metabolism increased with dietary juniper and were positively correlated with CYP2B concentration. The ability ofN. stephensito elevate CYP2B concentration and rate of α‐pinene metabolism with increasing levels of juniper in the diet may facilitate juniper specialization in this species.

     
    more » « less
  5. Abstract

    Gut microbes provide essential services to their host and shifts in their composition can impact host fitness. However, despite advances in our understanding of how microbes are assembled in the gut, we understand little about the stability of these communities within individuals, nor what factors influence its composition over the life of an animal. For this reason, we conducted a longitudinal survey of the gut microbial communities of individual free-ranging woodrats (Neotoma spp.) across a hybrid zone in the Mojave Desert, USA, using amplicon sequencing approaches to characterize gut microbial profiles and diet. We found that gut microbial communities were individualized and experienced compositional restructuring as a result of seasonal transitions and changes in diet. Turnover of gut microbiota was highest amongst bacterial subspecies and was much lower at the rank of Family, suggesting there may be selection for conservation of core microbial functions in the woodrat gut. Lastly, we identified an abundant core gut bacterial community that may aid woodrats in metabolizing a diet of plants and their specialized metabolites. These results demonstrate that the gut microbial communities of woodrats are highly dynamic and experience seasonal restructuring which may facilitate adaptive plasticity in response to changes in diet.

     
    more » « less