skip to main content


Title: The Effect of Pressure on Grain‐Growth Kinetics in Olivine Aggregates With Some Geophysical Applications
Abstract

The effect of pressure on grain‐growth kinetics of olivine was investigated up to 10 GPa at 1773 K under relatively water‐poor conditions. The results are interpreted using a relationto obtain the activation volume = 5.0 ± 1.1 cm3/mol forn = 2 or = 5.2 ± 1.1 cm3/mol forn = 3. The small activation volume means that grain‐growth kinetics in pure olivine aggregates is fast even in the dry deep upper mantle, implying that grain‐size is controlled by the pinning by other phases or by dynamic recrystallization except for the early stage after the phase transformation from wadsleyite in upwelling materials. The present results are applied to seismic wave attenuation that is likely controlled by grain‐boundary processes. The inferred peak in attenuation just below the oceanic lithosphere‐asthenosphere boundary from the NoMelt array is difficult to be explained by the pressure effects assuming the absorption band behavior because such a model requires a much larger activation volume than determined in this work and it also fails to explain high attenuation in the deep asthenosphere. This suggests that either melt accumulation or other processes such as elastically accommodated grain‐boundary sliding (EAGBS) is responsible for the peak in attenuation. The present results are also applied to EAGBS. We suggest that the deep upper mantle is likely to be relaxed by EAGBS, which implies that the shear velocity of the deep upper mantle can be several percent smaller than that inferred from single crystal elasticity.

 
more » « less
NSF-PAR ID:
10452996
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
126
Issue:
2
ISSN:
2169-9313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Shear attenuation provides insights into the physical and chemical state of the upper mantle. Yet, observations of attenuation are infrequent in the oceans, despite recent proliferation of arrays of ocean‐bottom seismometers (OBSs). Studies of attenuation in marine environments must overcome unique challenges associated with strong oceanographic noise at the seafloor and data loss during OBS recovery in addition to untangling the competing influences of elastic focusing, local site amplification, and anelastic attenuation on surface‐wave amplitudes. We apply Helmholtz tomography to OBS data to simultaneously resolve array‐averaged Rayleigh wave attenuation and maps of site amplification at periods of 20–150 s. The approach explicitly accounts for elastic focusing and defocusing due to lateral velocity heterogeneity using wavefield curvature. We validate the approach using realistic wavefield simulations at the NoMelt Experiment and Juan de Fuca (JdF) plate, which represent endmember open‐ocean and coastline‐adjacent environments, respectively. Focusing corrections are successfully recovered at both OBS arrays, including at periods <35 s at JdF where coastline effects result in strong multipathing. When applied to real data, our observations of Rayleigh wave attenuation at NoMelt and JdF revise previous estimates. At NoMelt, we observe a low attenuation lithospheric layer (> 1,500) overlying a highly attenuating asthenospheric layer (∼ 50 to 70). At JdF, we find a broad peak in attenuation (∼ 50 to 60) centered at a depth of 100–130 km. We also report strong local site amplification at the JdF Ridge (>10% at 31 s period), which can be used to refine models of crust and shallow mantle structure.

     
    more » « less
  2. Abstract

    We present a flow law for dislocation‐dominated creep in wet quartz derived from compiled experimental and field‐based rheological data. By integrating the field‐based data, including independently calculated strain rates, deformation temperatures, pressures, and differential stresses, we add constraints for dislocation‐dominated creep at conditions unattainable in quartz deformation experiments. A Markov Chain Monte Carlo (MCMC) statistical analysis computes internally consistent parameters for the generalized flow law: = Aσne−(Q+VP)/RT. From this initial analysis, we identify differenteffectivestress exponents for quartz deformed at confining pressures above and below ∼700 MPa. To minimize the possible effect of confining pressure, compiled data are separated into “low‐pressure” (<560 MPa) and “high‐pressure” (700–1,600 MPa) groups and reanalyzed using the MCMC approach. The “low‐pressure” data set, which is most applicable at midcrustal to lower‐crustal confining pressures, yields the following parameters: log(A) = −9.30 ± 0.66 MPanr s−1;n = 3.5 ± 0.2;r = 0.49 ± 0.13;Q = 118 ± 5 kJ mol−1; andV = 2.59 ± 2.45 cm3 mol−1. The “high‐pressure” data set produces a different set of parameters: log(A) = −7.90 ± 0.34 MPanr s−1;n = 2.0 ± 0.1;r = 0.49 ± 0.13;Q = 77 ± 8 kJ mol−1; andV = 2.59 ± 2.45 cm3 mol−1. Predicted quartz rheology is compared to other flow laws for dislocation creep; the calibrations presented in this study predict faster strain rates under geological conditions by more than 1 order of magnitude. The change innat high confining pressure may result from an increase in the activity of grain size sensitive creep.

     
    more » « less
  3. Abstract

    The Indo‐Burma subduction zone is a highly oblique subduction system where the Indian plate is converging with the Eurasian plate. How strain is partitioned between the Indo‐Burma interface and upper plate Kabaw Fault, and whether the megathrust is a locked and active zone of convergence that can generate great earthquakes are ongoing debates. Here, we use data from a total of 68 Global Navigation Satellite System (GNSS) stations, including newly installed stations across the Kabaw Fault and compute an updated horizontal and vertical GNSS velocity field. We correct vertical rates for fluctuating seasonal signals by accounting for the elastic response of monsoon water on the crust. We model the geodetic data by inverting for 11,000 planar and non‐planar megathrust fault geometries and two geologically viable structural interpretations of the Kabaw Fault that we construct from field geological data, considering a basin‐scale wedge‐fault and a crustal‐scale reverse fault. We demonstrate that the Indo‐Burma megathrust is locked, converging at a rate ofmm/yr, and capable of hosting >8.2Mwmegathrust events. We also show that the Kabaw Fault is locked and accommodating strike‐slip motion at a rate ofmm/yr and converging at a rate ofmm/yr. Our interpretation of the geological, geophysical, and geodetic datasets indicates the Kabaw Fault is a crustal‐scale structure that actively absorbs a portion of the convergence previously ascribed to the Indo‐Burma megathrust. This reveals a previously unrecognized seismic hazard associated with the Kabaw Fault and slightly reduces the estimated hazard posed by megathrust earthquakes in the region.

     
    more » « less
  4. Abstract

    The apparent end of the internally generated Martian magnetic field at 3.6–4.1 Ga is a key event in Martian history and has been linked to insufficient core cooling. We investigate the thermal and magnetic evolution of the Martian core and mantle using parameterized models and considered three improvements on previous studies. First, our models account for thermal stratification in the core. Second, the models are constrained by estimates for the present‐day areotherm. Third, we consider core thermal conductivity,, values in the range 5–40 Was suggested by recent experiments on iron alloys at Mars core conditions. The majority of our models indicate that the core of Mars is fully conductive at present with core temperatures greater than 1940 K. All of our models are consistent with the range ofW. Models with an activation volume of 6 (0)require a mantle reference viscosity of Pa s.

     
    more » « less
  5. Abstract

    Infrasound observations are increasingly used to constrain properties of volcanic eruptions. In order to better interpret infrasound observations, however, there is a need to better understand the relationship between eruption properties and sound generation. Here we perform two‐dimensional computational aeroacoustic simulations where we solve the compressible Navier‐Stokes equations for pure‐air with a large‐eddy simulation approximation. We simulate idealized impulsive volcanic eruptions where the exit velocity is specified and the eruption is pressure‐balanced with the atmosphere. Our nonlinear simulation results are compared with the commonly used analytical linear acoustics model of a compact monopole source radiating acoustic waves isotropically in a half space. The monopole source model matches the simulations for low exit velocities (m/s orwhereis the Mach number); however, the two solutions diverge as the exit velocity increases with the simulations developing lower peak amplitude, more rapid onset, and anisotropic radiation with stronger infrasound signals recorded above the vent than on Earth's surface. Our simulations show that interpreting ground‐based infrasound observations with the monopole source model can result in an underestimation of the erupted volume for eruptions with sonic or supersonic exit velocities. We examine nonlinear effects and show that nonlinear effects during propagation are relatively minor for the parameters considered. Instead, the dominant nonlinear effect is advection by the complex flow structure that develops above the vent. This work demonstrates the need to consider anisotropic radiation patterns and jet dynamics when interpreting infrasound observations, particularly for eruptions with sonic or supersonic exit velocities.

     
    more » « less