skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: New GNSS and Geological Data From the Indo‐Burman Subduction Zone Indicate Active Convergence on Both a Locked Megathrust and the Kabaw Fault
Abstract The Indo‐Burma subduction zone is a highly oblique subduction system where the Indian plate is converging with the Eurasian plate. How strain is partitioned between the Indo‐Burma interface and upper plate Kabaw Fault, and whether the megathrust is a locked and active zone of convergence that can generate great earthquakes are ongoing debates. Here, we use data from a total of 68 Global Navigation Satellite System (GNSS) stations, including newly installed stations across the Kabaw Fault and compute an updated horizontal and vertical GNSS velocity field. We correct vertical rates for fluctuating seasonal signals by accounting for the elastic response of monsoon water on the crust. We model the geodetic data by inverting for 11,000 planar and non‐planar megathrust fault geometries and two geologically viable structural interpretations of the Kabaw Fault that we construct from field geological data, considering a basin‐scale wedge‐fault and a crustal‐scale reverse fault. We demonstrate that the Indo‐Burma megathrust is locked, converging at a rate ofmm/yr, and capable of hosting >8.2Mwmegathrust events. We also show that the Kabaw Fault is locked and accommodating strike‐slip motion at a rate ofmm/yr and converging at a rate ofmm/yr. Our interpretation of the geological, geophysical, and geodetic datasets indicates the Kabaw Fault is a crustal‐scale structure that actively absorbs a portion of the convergence previously ascribed to the Indo‐Burma megathrust. This reveals a previously unrecognized seismic hazard associated with the Kabaw Fault and slightly reduces the estimated hazard posed by megathrust earthquakes in the region.  more » « less
Award ID(s):
1714892
PAR ID:
10409505
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
128
Issue:
4
ISSN:
2169-9313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In this paper, we are interested in the following question: given an arbitrary Steiner triple systemonvertices and any 3‐uniform hypertreeonvertices, is it necessary thatcontainsas a subgraph provided? We show the answer is positive for a class of hypertrees and conjecture that the answer is always positive. 
    more » « less
  2. Abstract Shear attenuation provides insights into the physical and chemical state of the upper mantle. Yet, observations of attenuation are infrequent in the oceans, despite recent proliferation of arrays of ocean‐bottom seismometers (OBSs). Studies of attenuation in marine environments must overcome unique challenges associated with strong oceanographic noise at the seafloor and data loss during OBS recovery in addition to untangling the competing influences of elastic focusing, local site amplification, and anelastic attenuation on surface‐wave amplitudes. We apply Helmholtz tomography to OBS data to simultaneously resolve array‐averaged Rayleigh wave attenuation and maps of site amplification at periods of 20–150 s. The approach explicitly accounts for elastic focusing and defocusing due to lateral velocity heterogeneity using wavefield curvature. We validate the approach using realistic wavefield simulations at the NoMelt Experiment and Juan de Fuca (JdF) plate, which represent endmember open‐ocean and coastline‐adjacent environments, respectively. Focusing corrections are successfully recovered at both OBS arrays, including at periods <35 s at JdF where coastline effects result in strong multipathing. When applied to real data, our observations of Rayleigh wave attenuation at NoMelt and JdF revise previous estimates. At NoMelt, we observe a low attenuation lithospheric layer (> 1,500) overlying a highly attenuating asthenospheric layer (∼ 50 to 70). At JdF, we find a broad peak in attenuation (∼ 50 to 60) centered at a depth of 100–130 km. We also report strong local site amplification at the JdF Ridge (>10% at 31 s period), which can be used to refine models of crust and shallow mantle structure. 
    more » « less
  3. Abstract The biggest volcanic eruption since 1991 happened on 15 January 2022 on the island of Hunga Tonga‐Hunga Haʻapai (20.6°S; 175.4°W) in the South Pacific between 4:00 and 4:16 UT. The updrafts from the eruption reached 58 km height. In order to observe its ionospheric effects, approximately 750 GNSS receivers in New Zealand and Australia were used to calculate the detrended total electron content (dTEC). Traveling ionospheric disturbances (TIDs) were observed over New Zealand 1.0–1.5 hr after the volcano eruption, with a horizontal wavelength () of 1,525 km, horizontal phase velocity () of 635 m/s, period (τ) of 40 min, and azimuth (α) of 214°. On the other hand, TIDs were observed 2–3 hr after the eruption in Australia with,,τ, andαof 922 km, 375 m/s, 41 min, and 266°, respectively. Using reverse ray tracing, we found that these GWs originated atz > 100 km at a location ∼500 km south of Tonga, in agreement with model results for the location of a large amplitude body force created from the breaking of primary GWs from the eruption. Thus, we found that these fast GWs were secondary, not primary GWs from the Tonga eruption. 
    more » « less
  4. Abstract Using data from 186 stations belonging to the USArray Transportable Array, a three‐dimensional shear wave velocity model for the southeastern United States is constructed for the top 180 km by a joint inversion of receiver functions and Rayleigh wave phase velocity dispersion computed from ambient noise and teleseismic earthquake data. The resulting shear wave velocity model and the crustal thickness and Vp/Vs () measurements show a clear spatial correspondence with major surficial geological features. The distinct low velocities observed in the depth range of 0–25 km beneath the eastern Gulf Coastal Plain reflect the thick layer of unconsolidated or poorly consolidated sediments atop the crystalline crust. The low(1.70–1.74) and slow lowermost crustal velocities observed beneath the eastern Southern Appalachian Mountains (including the Carolina Terrane and Inner Piedmont) relative to the adjacent Blue Ridge Mountains and Valley and Ridge can be interpreted by lower crustal delamination followed by relamination. The Osceola intrusive complex in the central Suwannee Terrane has similar crustal characteristics as the eastern Southern Appalachian Mountains and thus can similarly be attributed to crustal delamination/relamination processes. The Grenville Province and adjacent areas possess relatively highvalues which can be attributed to mafic intrusion associated with crustal extension in a recently recognized segments of the eastern arm of the Proterozoic Midcontinent Rift. 
    more » « less
  5. Abstract As the abyssal oceans warm, stratification is also expected to change in response. This change may impact mixing and vertical transport by altering the buoyancy flux, internal wave generation, and turbulent dissipation. In this study, repeated surveys of three hydrographic sections in the Southwest Pacific Basin between the 1990s and 2010s are used to estimate the change in buoyancy frequency. We find that below the°C isotherm,is on average reduced by a scaling factor of, a 12% reduction, per decade that intensifies with depth. At°C, we observe the biggest change:, or a 29% reduction per decade. Within the same period, the magnitude of vertical diffusive heat flux is also reduced by about, although this estimate is sensitive to the choice of estimated diffusivity. Finally, implications of these results for the heat budget and global ocean circulation are qualitatively discussed. 
    more » « less