Optical chirality is an effective means in screening molecules and their enantiomers in bioengineering, and recently has garnered attention as an implementation of qubits in quantum information processing. The conventional detection of circularly polarized light (CPL) is based on phase retardation and polarization separation using multiple optical components. An intrinsic solid‐state chirality detection device would be favorable for easier integration and implementation. Optical spin injection to the spin‐momentum‐locked topological surface states of topological insulators (TIs) by circularly polarized light leads to a directional DC photocurrent and hence possible circular polarization detection. However, this DC photocurrent is also accompanied by other photo‐responses. Here, a photodetection strategy using a TI transistor which senses CPL without the use of any additional components is demonstrated, it achieves a uniform response over the entire device with a sensitivity ≈5.6%. The Stokes parameters can also be extracted by arithmetic operation of photocurrents obtained with different bias and gate for a complete characterization of a polarized light beam. Therefore, this method enables chirality detection and Stokes parameter analysis using a single device. The proposed miniaturized intrinsic chirality detectors facilitate polarimetry sensing in applications from circular dichroism spectroscopy to biomedical diagnosis.
more » « less- Award ID(s):
- 1641101
- PAR ID:
- 10452999
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Optical Materials
- Volume:
- 9
- Issue:
- 10
- ISSN:
- 2195-1071
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
: Chiral inorganic nanostructures strongly interact with photons changing their polarization state. The resulting circularly polarized light emission (CPLE) has cross-disciplinary importance for a variety of chemical/biological processes and is essential for development of chiral photonics. However, the polarization effects are often complex and could be misinterpreted. CPLE in nanostructured media has multiple origins and several optical effects are typically convoluted into a single output. Analysing CPLE data obtained for nanoclusters, NPs, nanoassemblies, and nanocomposites from metals, chalcogenides, perovskite, and other nanostructures, we show that there are several distinct groups of nanomaterials for which CPLE is dominated either by circularly polarized luminescence (CPL) or circularly polarized scattering (CPS); there are also many nanomaterials for which they are comparable. We also show that (1) CPL and CPS contributions involve light-matter interactions at different structural levels; (2) contribution from CPS is especially strong for nanostructured microparticles, nanoassemblies and composites; and (3) engineering of materials with strongly polarized light emission requires synergistic implementation of CPL and CPS effects. These findings are expected to guide development of CPLE materials in a variety of technological fields, including 3D displays, information storage, biosensors, optical spintronics, and biological probes.more » « less
-
Abstract Chiral perovskite nanocrystals have emerged as an interesting chiral excitonic platform that combines both structural flexibility and superior optoelectronic properties. Despite several recent demonstrations of optical activity in various chiral perovskite nanocrystals, efficient circularly polarized luminescence (CPL) with tunable energies remains a challenge. The chirality imprinting mechanism as a function of perovskite nanocrystal dimensionality remains elusive. Here, atomically thin inorganic perovskite nanoplatelets (NPLs) are synthesized with precise control of layer thickness and are functionalized by chiral surface ligands, serving as a unique platform to probe the chirality transfer mechanism at the organic/perovskite interface. It is found that chirality is successfully imprinted into mono‐, bi‐, and tri‐layer inorganic perovskite NPLs, exhibiting tunable circular dichroism (CD) and CPL responses. However, chirality transfer decreases in thicker NPLs, resulting in decreased CD and CPL dissymmetry factors for thicker NPLs. Aided by large‐scale first‐principles calculations, it is proposed that chirality transfer is mainly mediated through a surface distortion rather than a hybridization of electronic states, giving rise to symmetry breaking in the perovskite lattice and spin‐split conduction bands. The findings described here provide an in‐depth understanding of chirality transfer and design principles for distorted‐surface perovskites for chiral photonic applications.
-
Abstract Three-dimensional topological insulators have been demonstrated in recent years, which possess intriguing gapless, spin-polarized Dirac states with linear dispersion only on the surface. The spin polarization of the topological surface states is also locked to its momentum, which allows controlling motion of electrons using optical helicity, i.e., circularly polarized light. The electrical and thermal transport can also be significantly tuned by the helicity-control of surface state electrons. Here, we report studies of photo-thermoelectric effect of the topological surface states in Bi2Te2Se thin films with large tunability using varied gate voltages and optical helicity. The Seebeck coefficient can be altered by more than five times compared to the case without spin injection. This deep tuning is originated from the optical helicity-induced photocurrent which is shown to be enhanced, reduced, turned off, and even inverted due to the change of the accessed band structures by electrical gating. The helicity-selected topological surface state thus has a large effect on thermoelectric transport, demonstrating great opportunities for realizing helicity control of optoelectronic and thermal devices.
-
Nonlinear optical responses to external electromagnetic field, characterized by second- and higher-order susceptibilities, play crucial roles in nonlinear optics and optoelectronics. Here, we demonstrate the possibility to achieve ferroicity-driven nonlinear photocurrent switching in time-reversal invariant multiferroics. It is enabled by the second-order current response to electromagnetic field whose direction can be controlled by both internal ferroic orders and external light polarization. Second-order direct photocurrent consists of shift current and circular photocurrent under linearly and circularly polarized light irradiation, respectively. We elucidate the microscopic mechanism in a representative class of two-dimensional multiferroic materials using group theoretical analyses and first-principles theory. The complex interplay of symmetries, shift vector, and Berry curvature governs the fundamental properties and switching behavior of shift current and circular photocurrent. Ferroicity-driven nonlinear photocurrent switching will open avenues for realizing nonlinear optoelectronics, nonlinear multiferroics, etc., using the coupled ferroic orders and nonlinear responses of ferroic materials under external field.more » « less
-
Abstract In two-dimensional chiral metal-halide perovskites, chiral organic spacers endow structural and optical chirality to the metal-halide sublattice, enabling exquisite control of light, charge, and electron spin. The chiroptical properties of metal-halide perovskites have been measured by transmissive circular dichroism spectroscopy, which necessitates thin-film samples. Here, by developing a reflection-based approach, we characterize the intrinsic, circular polarization-dependent complex refractive index for a prototypical two-dimensional chiral lead-bromide perovskite and report large circular dichroism for single crystals. Comparison with ab initio theory reveals the large circular dichroism arises from the inorganic sublattice rather than the chiral ligand and is an excitonic phenomenon driven by electron-hole exchange interactions, which breaks the degeneracy of transitions between Rashba-Dresselhaus-split bands, resulting in a Cotton effect. Our study suggests that previous data for spin-coated films largely underestimate the optical chirality and provides quantitative insights into the intrinsic optical properties of chiral perovskites for chiroptical and spintronic applications.