skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: PCSPOOF: Compromising the Safety of Time-Triggered Ethernet
Designers are increasingly using mixed-criticality networks in embedded systems to reduce size, weight, power, and cost. Perhaps the most successful of these technologies is Time-Triggered Ethernet (TTE), which lets critical time-triggered (TT) traffic and non-critical best-effort (BE) traffic share the same switches and cabling. A key aspect of TTE is that the TT part of the system is isolated from the BE part, and thus BE devices have no way to disrupt the operation of the TTE devices. This isolation allows designers to: (1) use untrusted, but low cost, BE hardware, (2) lower BE security requirements, and (3) ignore BE devices during safety reviews and certification procedures.We present PCSPOOF, the first attack to break TTE’s isolation guarantees. PCSPOOF is based on two key observations. First, it is possible for a BE device to infer private information about the TT part of the network that can be used to craft malicious synchronization messages. Second, by injecting electrical noise into a TTE switch over an Ethernet cable, a BE device can trick the switch into sending these malicious synchronization messages to other TTE devices. Our evaluation shows that successful attacks are possible in seconds, and that each successful attack can cause TTE devices to lose synchronization for up to a second and drop tens of TT messages — both of which can result in the failure of critical systems like aircraft or automobiles. We also show that, in a simulated spaceflight mission, PCSPOOF causes uncontrolled maneuvers that threaten safety and mission success. We disclosed PCSPOOF to aerospace companies using TTE, and several are implementing mitigations from this paper.  more » « less
Award ID(s):
1703936 1955670 1750158
PAR ID:
10453011
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2023 IEEE Symposium on Security and Privacy (SP)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Future tactical communications involves high data rate best effort traffic working alongside real-time traffic for time-critical applications with hard deadlines. Unavailable bandwidth and/or untimely responses may lead to undesired or even catastrophic outcomes. Ethernet-based communication systems are one of the major tactical network standards due to the higher bandwidth, better utilization, and ability to handle heterogeneous traffic. However, Ethernet suffers from inconsistent performance for jitter, latency and bandwidth under heavy loads. The emerging Time-Triggered Ethernet (TTE) solutions promise deterministic Ethernet performance, fault-tolerant topologies and real-time guarantees for critical traffic. In this paper we study the TTE protocol and build a TTTech TTE test bed to evaluate its performance. Through experimental study, the TTE protocol was observed to provide consistent high data rates for best effort messages, determinism with very low jitter for time-triggered messages, and fault-tolerance for minimal packet loss using redundant networking topologies. In addition, challenges were observed that presented a trade-off between the integration cycle and the synchronization overhead. It is concluded that TTE is a capable solution to support heterogeneous traffic in time-critical applications, such as aerospace systems (eg. airplanes, spacecraft, etc.), ground-based vehicles (eg. trains, buses, cars, etc), and cyber-physical systems (eg. smart-grids, IoT, etc.). 
    more » « less
  2. null (Ed.)
    Time-Sensitive Networking (TSN) is designed for real-time applications, usually pertaining to a set of Time-Triggered (TT) data flows. TT traffic generally requires low packet loss and guaranteed upper bounds on end-to-end delay. To guarantee the end-to-end delay bounds, TSN uses Time-Aware Shaper (TAS) to provide deterministic service to TT flows. Each frame of TT traffic is scheduled a specific time slot at each switch for its transmission. Several factors may influence frame transmissions, which then impact the scheduling in the whole network. These factors may cause frames sent in wrong time slots, namely misbehaviors. To mitigate the occurrence of misbehaviors, we need to find proper scheduling for the whole network. In our research, we use a reinforcement-learning model, which is called Deep Deterministic Policy Gradient (DDPG), to find the suitable scheduling. DDPG is used to model the uncertainty caused by the transmission-influencing factors such as time-synchronization errors. Compared with the state of the art, our approach using DDPG significantly decreases the number of misbehaviors in TSN scenarios studied and improves the delay performance of the network. 
    more » « less
  3. Recently, switched Ethernet has become increasingly popular in networked cyber-physical systems (NCPS). In an Ethernet-based NCPS, network-connected devices (e.g., sensors and actuators) realize time-critical tasks by exchanging miscellaneous information, such as sensor readings and control commands. To ensure reliable control and operation, network-induced delays for time-critical NCPS applications must be carefully examined. In this work, we propose a framework combining network delay measurements and network-calculus-based delay performance analysis to obtain accurate, deterministic worst-case delay bounds for NCPS. By modeling traffic sources and networking devices (e.g., Ethernet switches) through measurements, we establish accurate traffic and device models for network-calculus-based analysis. To obtain worst-case delay bounds, different network-calculus-based analytical methods can be leveraged, allowing CPS architects to customize the proposed delay analysis framework to suit application-specific needs. Our evaluation results show that the proposed approach derives accurate delay bounds, making it a valuable tool for architects designing NCPSs supporting time-critical applications. 
    more » « less
  4. Mobile devices with dynamic refresh rate (DRR) switching displays have recently become increasingly common. For power optimization, these devices switch to lower refresh rates when idling, and switch to higher refresh rates when the content displayed requires smoother transitions. However, the security and privacy vulnerabilities of DRR switching have not been investigated properly. In this paper, we propose a novel attack vector called RefreshChannels that exploits DRR switching capabilities for mobile device attacks. Specifically, we first create a covert channel between two colluding apps that are able to stealthily share users' private information by modulating the data with the refresh rates, bypassing the OS sandboxing and isolation measures. Second, we further extend its applicability by creating a covert channel between a malicious app and either a phishing webpage or a malicious advertisement on a benign webpage. Our extensive evaluations on five popular mobile devices from four different vendors demonstrate the effectiveness and widespread impacts of these attacks. Finally, we investigate several countermeasures, such as restricting access to refresh rates, and find they are inadequate for thwarting RefreshChannels due to DDR's unique characteristics 
    more » « less
  5. Achieving low remote memory access latency remains the primary challenge in realizing memory disaggregation over Ethernet within the datacenters. We present EDM that attempts to overcome this challenge using two key ideas. First, while existing network protocols for remote memory access over the Ethernet, such as TCP/IP and RDMA, are implemented on top of the Ethernet MAC layer, EDM takes a radical approach by implementing the entire network protocol stack for remote memory access within the Physical layer (PHY) of the Ethernet. This overcomes fundamental latency and bandwidth overheads imposed by the MAC layer, especially for small memory messages. Second, EDM implements a centralized, fast, in-network scheduler for memory traffic within the PHY of the Ethernet switch. Inspired by the classic Parallel Iterative Matching (PIM) algorithm, the scheduler dynamically reserves bandwidth between compute and memory nodes by creating virtual circuits in the PHY, thus eliminating queuing delay and layer 2 packet processing delay at the switch for memory traffic, while maintaining high bandwidth utilization. Our FPGA testbed demonstrates that EDM's network fabric incurs a latency of only ~300 ns for remote memory access in an unloaded network, which is an order of magnitude lower than state-of-the-art Ethernet-based solutions such as RoCEv2 and comparable to emerging PCIe-based solutions such as CXL. Larger-scale network simulations indicate that even at high network loads, EDM's average latency remains within 1.3x its unloaded latency. 
    more » « less