skip to main content

This content will become publicly available on August 1, 2024

Title: Why surface hydrophobicity promotes CO 2 electroreduction: a case study of hydrophobic polymer N -heterocyclic carbenes
We report the use of polymer N -heterocyclic carbenes (NHCs) to control the microenvironment surrounding metal nanocatalysts, thereby enhancing their catalytic performance in CO 2 electroreduction. Three polymer NHC ligands were designed with different hydrophobicity: hydrophilic poly(ethylene oxide) (PEO–NHC), hydrophobic polystyrene (PS–NHC), and amphiphilic block copolymer (BCP) (PEO- b -PS–NHC). All three polymer NHCs exhibited enhanced reactivity of gold nanoparticles (AuNPs) during CO 2 electroreduction by suppressing proton reduction. Notably, the incorporation of hydrophobic PS segments in both PS–NHC and PEO- b -PS–NHC led to a twofold increase in the partial current density for CO formation, as compared to the hydrophilic PEO–NHC. While polymer ligands did not hinder ion diffusion, their hydrophobicity altered the localized hydrogen bonding structures of water. This was confirmed experimentally and theoretically through attenuated total reflectance surface-enhanced infrared absorption spectroscopy and molecular dynamics simulation, demonstrating improved CO 2 diffusion and subsequent reduction in the presence of hydrophobic polymers. Furthermore, NHCs exhibited reasonable stability under reductive conditions, preserving the structural integrity of AuNPs, unlike thiol-ended polymers. The combination of NHC binding motifs with hydrophobic polymers provides valuable insights into controlling the microenvironment of metal nanocatalysts, offering a bioinspired strategy for the design of artificial metalloenzymes.  more » « less
Award ID(s):
2144360 2102245 2102290
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Chemical Science
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Metal nanoparticles (NPs) tethered by synthetic polymers are of broad interest for self-assembly, nanomedicine and catalysis. The binding motifs in polymer ligands usually as the end functional groups of polymers are mostly limited to thiolates. Since the binding motif only represents a tiny fraction of many repeating units in polymers, its importance is often ignored. We herein report the uniqueness of polymeric N-heterocyclic carbene (NHC) ligands in providing oxidative stability and promoting the catalytic activity of noble metal NPs. Two “grafting to” methods were developed for polymer NHCs for pre-synthesized metal NPs in various solvents and with different sizes. Remarkably, imidazolium-terminated polystyrene can modify gold NPs (AuNPs) within 2 min while reaching a similar grafting density to polystyrene-thiol (SH) requiring 6 h modification. We demonstrate that polymer NHCs are extremely stable at high temperature in air. Interestingly, the binding motifs of polymer ligands dominate the catalytic activity of metal NPs. Polymer NHC modified metal NPs showed improved activity regardless of the surface crowdedness. In the case of AuNPs, AuNPs modified with polystyrene NHCs are approximately 5.2 times more active than citrate-capped ones and 22 times more active than those modified with polystyrene thiolates. In view of ligand-controlled catalytic properties of metal NPs, our results illustrate the importance of binding motifs that has been overlooked in the past. 
    more » « less
  2. A facile methodology to prepare N-heterocyclic carbene (NHC)-terminated polymers as surface ligands to functionalize gold nanoparticles (AuNPs) is reported. Our method highlights a mild, aerobic synthesis of NHC-functionalized polymers and a simple ligand exchange approach towards surface modification of AuNPs prepared in aqueous solution. Two methods, including end-group functionalization of halogen-ended polymers from a conventional atom transfer radical polymerization (ATRP) and post-polymerization functionalization of imidazole-containing polymers using imidazole-containing ATRP initiator, have been investigated to prepare imidazolium-ended polymers. Using a one-step, oxygen and moisture tolerant procedure, the polymer–NHC–Cu( i ) species can be synthesized from imidazolium-ended polymers and readily bind to citrate-capped AuNPs likely through transmetalation, yielding robust polymer-stabilized AuNPs. Our synthetic method significantly simplifies the preparation and use of polymer–NHC ligands for surface functionalization of metal NPs. Our methodology is general and potentially applicable to any polymers prepared by ATRP to functionalize metal NPs via NHC–metal coordination; therefore, it will likely broaden the applications of polymer–NHC ligands for metal nanoparticles in the fields of catalysis and nanomedicine. 
    more » « less
  3. Abstract

    Site‐selective and partial decoration of supported metal nanoparticles (NPs) with transition metal oxides (e.g., FeOx) can remarkably improve its catalytic performance and maintain the functions of the carrier. However, it is challenging to selectively deposit transition metal oxides on the metal NPs embedded in the mesopores of supporting matrix through conventional deposition method. Herein, a restricted in situ site‐selective modification strategy utilizing poly(ethylene oxide)‐block‐polystyrene (PEO‐b‐PS) micellar nanoreactors is proposed to overcome such an obstacle. The PEO shell of PEO‐b‐PS micelles interacts with the hydrolyzed tungsten salts and silica precursors, while the hydrophobic organoplatinum complex and ferrocene are confined in the hydrophobic PS core. The thermal treatment leads to mesoporous SiO2/WO3‐xframework, and meanwhile FeOxnanolayers are in situ partially deposited on the supported Pt NPs due to the strong metal‐support interaction between FeOxand Pt. The selective modification of Pt NPs with FeOxmakes the Pt NPs present an electron‐deficient state, which promotes the mobility of CO and activates the oxidation of CO. Therefore, mesoporous SiO2/WO3‐x‐FeOx/Pt based gas sensors show a high sensitivity (31 ± 2 in 50 ppm of CO), excellent selectivity, and fast response time (3.6 s to 25 ppm) to CO gas at low operating temperature (66 °C, 74% relative humidity).

    more » « less
  4. Abstract

    The discovery of NHCs (NHC = N‐heterocyclic carbenes) as ancillary ligands in transition‐metal‐catalysis ranks as one of the most important developments in synthesis and catalysis. It is now well‐recognized that the strong σ‐donating properties of NHCs along with the ease of scaffold modification and a steric shielding of the N‐wingtip substituents around the metal center enable dramatic improvements in catalytic processes, including the discovery of reactions that are not possible using other ancillary ligands. In this context, although the classical NHCs based on imidazolylidene and imidazolinylidene ring systems are now well‐established, recently tremendous progress has been made in the development and catalytic applications of BIAN‐NHC (BIAN = bis(imino)acenaphthene) class of ligands. The enhanced reactivity of BIAN‐NHCs is a direct result of the combination of electronic and steric properties that collectively allow for a major expansion of the scope of catalytic processes that can be accomplished using NHCs. BIAN‐NHC ligands take advantage of (1) the stronger σ‐donation, (2) lower lying LUMO orbitals, (3) the presence of an extended π‐system, (4) the rigid backbone that pushes the N‐wingtip substituents closer to the metal center by buttressing effect, thus resulting in a significantly improved control of the catalytic center and enhanced air‐stability of BIAN‐NHC‐metal complexes at low oxidation state. Acenaphthoquinone as a precursor enables facile scaffold modification, including for the first time the high yielding synthesis of unsymmetrical NHCs with unique catalytic properties. Overall, this results in a highly attractive, easily accessible class of ligands that bring major advances and emerge as a leading practical alternative to classical NHCs in various aspects of catalysis, cross‐coupling and C−H activation endeavors.

    more » « less
  5. We summarize recent advances in the design of hybrid nanostructures through the combination of synthetic polymers and plasmonic nanoparticles (NPs). We categorize the synthetic methods of those polymer-coated metal NPs into two main strategies: direct encapsulation and chemical grafting, based on how NPs interact with polymers. In direct encapsulation, NPs with hydrophobic ligands are physically encapsulated into polymer micelles, primarily through hydrophobic interactions. We discuss strategies for controlling the loading numbers and locations of NPs within polymer micelles. On the other hand, polymer-grafted NPs (PGNPs) have synthetic polymers as ligands chemically grafted on NPs. We highlight that polymer ligands can asymmetrically coat metal NPs through hydrophobicity-driven phase segregation using homopolymers, BCPs and blocky random copolymers. This review provides insights into the methodologies and mechanisms to design new nanostructures of polymers and NPs, aiming to enhance the understanding of this rapidly evolving field. 
    more » « less