skip to main content


Title: Finite‐element modeling of the seismic response of reinforced masonry wall structures
Abstract

Modern design codes and performance‐based earthquake engineering rely heavily on computational tools to assess the seismic performance and collapse potential of structural systems. This paper presents a detailed finite‐element (FE) modeling scheme for the simulation of the seismic response of reinforced masonry (RM) wall structures. Smeared‐crack shell elements are combined with cohesive discrete‐crack interface elements to capture crushing and tensile fracture of masonry. Beam elements incorporating geometric as well as material nonlinearity are used to capture the yielding, buckling, and fracture of the reinforcing bars. The beam elements are connected to the shell elements through interface elements that simulate the bond‐slip and dowel‐action effects. An element removal scheme is introduced to enhance the robustness and accuracy of the numerical computation. The material models and interface elements have been implemented in a commercial FE analysis program. The modeling scheme is validated with data from quasi‐static cyclic tests on RM walls as well as with results from shake‐table tests on RM building systems.

 
more » « less
NSF-PAR ID:
10453253
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Earthquake Engineering & Structural Dynamics
Volume:
50
Issue:
4
ISSN:
0098-8847
Page Range / eLocation ID:
p. 1125-1146
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    In regions of low to moderate seismicity in North America, reinforced masonry structures are mostly partially grouted. The behavior of such structures under lateral seismic loads is complicated because of the interaction of the grouted and ungrouted masonry. As revealed in past experimental studies, the performance of partially grouted masonry (PGM) walls under in‐plane cyclic lateral loading is inferior to that of fully grouted walls. However, the dynamic behavior of a PGM wall system under severe seismic loads is not well understood. In this study, a full‐scale, one‐story, PGM building designed for a moderate seismic zone according to current code provisions was tested on a shake table. It was shown that the structure was able to develop an adequate base shear capacity and withstand two earthquake motions that had an effective intensity of two times the maximum considered earthquake with only moderate cracking in mortar joints. However, the structure eventually failed in a brittle manner in a subsequent motion that had a slightly lower effective intensity. A detailed finite element model of the test structure has been developed and validated. The model has been used to understand the distribution of the lateral force resistance among the wall components and to evaluate the shear‐strength equation given in the design code. The code equation has been found to be adequate for this structure. Furthermore, a parametric study conducted with the finite element model has shown that the introduction of a continuous bond beam right below a window opening is highly beneficial.

     
    more » « less
  2. Abstract

    In traditional modeling approaches, earthquakes are often depicted as displacement discontinuities across zero‐thickness surfaces embedded within a linear elastodynamic continuum. This simplification, however, overlooks the intricate nature of natural fault zones and may fail to capture key physical phenomena integral to fault processes. Here, we propose a diffuse interface description for dynamic earthquake rupture modeling to address these limitations and gain deeper insight into fault zones' multifaceted volumetric failure patterns, mechanics, and seismicity. Our model leverages a steady‐state phase‐field, implying time‐independent fault zone geometry, which is defined by the contours of a signed distance function relative to a virtual fault plane. Our approach extends the classical stress glut method, adept at approximating fault‐jump conditions through inelastic alterations to stress components. We remove the sharp discontinuities typically introduced by the stress glut approach via our spatially smooth, mesh‐independent fault representation while maintaining the method's inherent logical simplicity within the well‐established spectral element method framework. We verify our approach using 2D numerical experiments in an open‐source spectral element implementation, examining both a kinematically driven Kostrov‐like crack and spontaneous dynamic rupture in diffuse fault zones. The capabilities of our methodology are showcased through mesh‐independent planar and curved fault zone geometries. Moreover, we highlight that our phase‐field‐based diffuse rupture dynamics models contain fundamental variations within the fault zone. Dynamic stresses intertwined with a volumetrically applied friction law give rise to oblique plastic shear and fault reactivation, markedly impacting rupture front dynamics and seismic wave radiation. Our results encourage future applications of phase‐field‐based earthquake modeling.

     
    more » « less
  3. SUMMARY

    A better understanding of damage accumulation before dynamic failure events in geological material is essential to improve seismic hazard assessment. Previous research has demonstrated the sensitivity of seismic velocities to variations in crack geometry, with established evidence indicating that initial crack closure induces rapid changes in velocity. Our study extends these findings by investigating velocity changes by applying coda wave interferometry (CWI). We use an array of 16 piezoceramic transducers to send and record ultrasonic pulses and to determine changes in seismic velocity on intact and faulted Westerly granite samples. Velocity changes are determined from CWI and direct phase arrivals. This study consists of three sets of experiments designed to characterize variations in seismic velocity under various initial and boundary conditions. The first set of experiments tracks velocity changes during hydrostatic compression from 2 and 191 MPa in intact Westerly granite samples. The second set of experiments focuses on saw-cut samples with different roughness and examines the effects of confining pressure increase from 2 to 120 MPa. The dynamic formation of a fracture and the preceding damage accumulation is the focus of the third type of experiment, during which we fractured an initially intact rock sample by increasing the differential stress up to 780 MPa while keeping the sample confined at 75 MPa. The tests show that: (i) The velocity change for rough saw cut samples suggests that the changes in bulk material properties have a more pronounced influence than fault surface apertures or roughness. (ii) Seismic velocities demonstrate higher sensitivity to damage accumulation under increasing differential stress than macroscopic measurements. Axial stress measured by an external load cell deviates from linearity around two-third through the experiment at a stress level of 290 MPa higher than during the initial drop in seismic velocities. (iii) Direct waves exhibit strong anisotropy with increasing differential stress and accumulating damage before rock fracture. Coda waves, on the other hand, effectively average over elastic wave propagation for both fast and slow directions, and the resulting velocity estimates show little evidence for anisotropy. The results demonstrate the sensitivity of seismic velocity to damage evolution at various boundary conditions and progressive microcrack generation with long lead times before dynamic fracture.

     
    more » « less
  4. Abstract

    Infaunal organisms mix sediments through burrowing, ingestion and egestion, enhancing fluxes of nutrients and oxygen, yet the mechanisms underlying bioturbation remain unresolved. Burrows are extended through muddy sediments by fracture, and we hypothesize that the cohesive properties of sediments play an important but unexplored role in resisting bioturbation. Specifically, we suggest that crack branching, tortuosity, and microcracking are important in freeing particles from the cohesive matrix, and that the sediment properties that affect these processes are important predictors of bioturbation. We use finite element modeling and simplified, mechanics‐based models to explore the relative importance of sediment mechanical properties and worm behaviors in determining crack propagation paths. Our results show that crack propagation direction depends on variability in fracture toughness, and that applying more force to one side of the burrow wall, simulating “steering” behavior, has surprisingly little effect on crack propagation direction. Burrowers instead steer by choosing among crack branches. Paths created by burrowing worms in natural sediments are mostly straight with some crack branching, consistent with modeling results. Crack branching also requires sufficient stored elastic energy to drive two cracks, and worms can exert larger forces resulting in more stored energy in stiffer sediments. This implies that more crack branching and consequently more particle mixing occurs in heterogeneous sediments with low fracture toughness relative to stiffness. Whether sediments with greater potential for crack branching also experience higher bioturbation remains to be tested, but these results indicate that material properties of sediments may be important in resisting or facilitating bioturbation.

     
    more » « less
  5. The line crack models, including linear elastic fracture mechanics (LEFM), cohesive crack model (CCM), and extended finite element method (XFEM), rest on the century-old hypothesis of constancy of materials’ fracture energy. However, the type of fracture test presented here, named the gap test, reveals that, in concrete and probably all quasibrittle materials, including coarse-grained ceramics, rocks, stiff foams, fiber composites, wood, and sea ice, the effective mode I fracture energy depends strongly on the crack-parallel normal stress, in-plane or out-of-plane. This stress can double the fracture energy or reduce it to zero. Why hasn’t this been detected earlier? Because the crack-parallel stress in all standard fracture specimens is negligible, and is, anyway, unaccountable by line crack models. To simulate this phenomenon by finite elements (FE), the fracture process zone must have a finite width, and must be characterized by a realistic tensorial softening damage model whose vectorial constitutive law captures oriented mesoscale frictional slip, microcrack opening, and splitting with microbuckling. This is best accomplished by the FE crack band model which, when coupled with microplane model M7, fits the test results satisfactorily. The lattice discrete particle model also works. However, the scalar stress–displacement softening law of CCM and tensorial models with a single-parameter damage law are inadequate. The experiment is proposed as a standard. It represents a simple modification of the three-point-bend test in which both the bending and crack-parallel compression are statically determinate. Finally, a perspective of various far-reaching consequences and limitations of CCM, LEFM, and XFEM is discussed.

     
    more » « less