Traditional relational database systems handle data by dividing their memory into sections such as a buffer cache and working memory, assigning a memory budget to each section to efficiently manage a limited amount of overall memory. They also assign memory budgets to memory‐intensive operators such as sorts and joins and control the allocation of memory to these operators; each memory‐intensive operator attempts to maximize its memory usage to reduce disk I/O cost. Implementing such memory‐intensive operators requires a careful design and application of appropriate algorithms that properly utilize memory. Today's Big Data management systems need the ability to handle large amounts of data similarly, as it is unrealistic to assume that truly big data will fit into memory. In this article, we share our memory management experiences in Apache AsterixDB, an open‐source Big Data management software platform that scales out horizontally on shared‐nothing commodity computing clusters. We describe the implementation of AsterixDB's memory‐intensive operators and their designs related to memory management. We also discuss memory management at the global (cluster) level. We conducted an experimental study using several synthetic and real datasets to explore the impact of this work. We believe that future Big Data management system builders can benefit from these experiences.
more » « less- Award ID(s):
- 1925610
- NSF-PAR ID:
- 10453417
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Software: Practice and Experience
- Volume:
- 50
- Issue:
- 7
- ISSN:
- 0038-0644
- Page Range / eLocation ID:
- p. 1114-1151
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Many high-performance systems now include different types of memory devices within the same compute platform to meet strict performance and cost constraints. Such heterogeneous memory systems often include an upper-level tier with better performance, but limited capacity, and lower-level tiers with higher capacity, but less bandwidth and longer latencies for reads and writes. To utilize the different memory layers efficiently, current systems rely on hardware-directed, memory -side caching or they provide facilities in the operating system (OS) that allow applications to make their own data-tier assignments. Since these data management options each come with their own set of trade-offs, many systems also include mixed data management configurations that allow applications to employ hardware- and software-directed management simultaneously, but for different portions of their address space. Despite the opportunity to address limitations of stand-alone data management options, such mixed management modes are under-utilized in practice, and have not been evaluated in prior studies of complex memory hardware. In this work, we develop custom program profiling, configurations, and policies to study the potential of mixed data management modes to outperform hardware- or software-based management schemes alone. Our experiments, conducted on an Intel ® Knights Landing platform with high-bandwidth memory, demonstrate that the mixed data management mode achieves the same or better performance than the best stand-alone option for five memory intensive benchmark applications (run separately and in isolation), resulting in an average speedup compared to the best stand-alone policy of over 10 %, on average.more » « less
-
With the rise of big spatial data, many systems were developed on Hadoop, Spark, Storm, Flink, and similar big data systems to handle big spatial data. At the core of all these systems, they use a computational geometry library to represent points, lines, and polygons, and to process them to evaluate spatial predicates and spatial analysis queries. This paper evaluates four computational geometry libraries to assess their suitability for various workloads in big spatial data exploration, namely, GEOS, JTS, Esri Geometry API, and GeoLite. The latter is a library that we built specifically for this paper to test some ideas that are not present in other li- braries. For all the four libraries, we evaluate their computational efficiency and memory usage using a combination of micro- and macro-benchmarks on Spark. The paper gives recommendations on how to use these libraries for big spatial data exploration.more » « less
-
null (Ed.)Due to the amount of data involved in emerging deep learning and big data applications, operations related to data movement have quickly become a bottleneck. Data-centric computing (DCC), as enabled by processing-in-memory (PIM) and near-memory processing (NMP) paradigms, aims to accelerate these types of applications by moving the computation closer to the data. Over the past few years, researchers have proposed various memory architectures that enable DCC systems, such as logic layers in 3D-stacked memories or charge-sharing-based bitwise operations in dynamic random-access memory (DRAM). However, application-specific memory access patterns, power and thermal concerns, memory technology limitations, and inconsistent performance gains complicate the offloading of computation in DCC systems. Therefore, designing intelligent resource management techniques for computation offloading is vital for leveraging the potential offered by this new paradigm. In this article, we survey the major trends in managing PIM and NMP-based DCC systems and provide a review of the landscape of resource management techniques employed by system designers for such systems. Additionally, we discuss the future challenges and opportunities in DCC management.more » « less
-
Summary Data‐driven applications are essential to handle the ever‐increasing volume, velocity, and veracity of data generated by sources such as the Web and Internet of Things (IoT) devices. Simultaneously, an event‐driven computational paradigm is emerging as the core of modern systems designed for database queries, data analytics, and on‐demand applications. Modern big data processing runtimes and asynchronous many task (AMT) systems from high performance computing (HPC) community have adopted dataflow event‐driven model. The services are increasingly moving to an event‐driven model in the form of Function as a Service (FaaS) to compose services. An event‐driven runtime designed for data processing consists of well‐understood components such as communication, scheduling, and fault tolerance. Different design choices adopted by these components determine the type of applications a system can support efficiently. We find that modern systems are limited to specific sets of applications because they have been designed with fixed choices that cannot be changed easily. In this paper, we present a loosely coupled component‐based design of a big data toolkit where each component can have different implementations to support various applications. Such a polymorphic design would allow services and data analytics to be integrated seamlessly and expand from edge to cloud to HPC environments.
-
To process real-world datasets, modern data-parallel systems often require extremely large amounts of memory, which are both costly and energy inefficient. Emerging non-volatile memory (NVM) technologies offer high capacity compared to DRAM and low energy compared to SSDs. Hence, NVMs have the potential to fundamentally change the dichotomy between DRAM and durable storage in Big Data processing. However, most Big Data applications are written in managed languages and executed on top of a managed runtime that already performs various dimensions of memory management. Supporting hybrid physical memories adds a new dimension, creating unique challenges in data replacement. This article proposes Panthera, a semantics-aware, fully automated memory management technique for Big Data processing over hybrid memories. Panthera analyzes user programs on a Big Data system to infer their coarse-grained access patterns, which are then passed to the Panthera runtime for efficient data placement and migration. For Big Data applications, the coarse-grained data division information is accurate enough to guide the GC for data layout, which hardly incurs overhead in data monitoring and moving. We implemented Panthera in OpenJDK and Apache Spark. Based on Big Data applications’ memory access pattern, we also implemented a new profiling-guided optimization strategy, which is transparent to applications. With this optimization, our extensive evaluation demonstrates that Panthera reduces energy by 32–53% at less than 1% time overhead on average. To show Panthera’s applicability, we extend it to QuickCached, a pure Java implementation of Memcached. Our evaluation results show that Panthera reduces energy by 28.7% at 5.2% time overhead on average.more » « less