skip to main content


Title: High‐Resolution Constraints on Pacific Upper Mantle Petrofabric Inferred From Surface‐Wave Anisotropy
Abstract

Lithospheric seismic anisotropy illuminates mid‐ocean ridge dynamics and the thermal evolution of oceanic plates. We utilize short‐period (5–7.5 s) ambient‐noise surface waves and 15‐ to 150‐s Rayleigh waves measured across the NoMelt ocean‐bottom array to invert for the complete radial and azimuthal anisotropy in the upper ∼35 km of ∼70‐Ma Pacific lithospheric mantle, and azimuthal anisotropy through the underlying asthenosphere. Strong azimuthal variations in Rayleigh‐ and Love‐wave velocity are observed, including the first clearly measured Love‐wave 2θand 4θvariations. Inversion of averaged dispersion requires radial anisotropy in the shallow mantle (2‐3%) and the lower crust (4‐5%), with horizontal velocities (VSH) faster than vertical velocities (VSV). Azimuthal anisotropy is strong in the mantle, with 4.5–6% 2θvariation inVSVwith fast propagation parallel to the fossil‐spreading direction (FSD), and 2–2.5% 4θvariation inVSHwith a fast direction 45° from FSD. The relative behavior of 2θ, 4θ, and radial anisotropy in the mantle are consistent with ophiolite petrofabrics, linking outcrop and surface‐wave length scales.VSVremains fast parallel to FSD to ∼80 km depth where the direction changes, suggesting spreading‐dominated deformation at the ridge. The transition at ∼80 km perhaps marks the dehydration boundary and base of the lithosphere. Azimuthal anisotropy strength increases from the Moho to ∼30 km depth, consistent with flow models of passive upwelling at the ridge. Strong azimuthal anisotropy suggests extremely coherent olivine fabric. Weaker radial anisotropy implies slightly nonhorizontal fabric or the presence of alternative (so‐called E‐type) peridotite fabric. Presence of radial anisotropy in the crust suggests subhorizontal layering and/or shearing during crustal accretion.

 
more » « less
NSF-PAR ID:
10453567
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
124
Issue:
1
ISSN:
2169-9313
Page Range / eLocation ID:
p. 631-657
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The breakup of supercontinent Pangea occurred ∼200 Ma forming the Eastern North American Margin (ENAM). Yet, the precise timing and mechanics of breakup and onset of seafloor spreading remain poorly constrained. We investigate the relict lithosphere offshore eastern North America using ambient‐noise Rayleigh‐wave phase velocity (12–32 s) and azimuthal anisotropy (17–32 s) at the ENAM Community Seismic Experiment (CSE). Incorporating previous constraints on crustal structure, we construct a shear velocity model for the crust and upper ∼60 km of the mantle beneath the ENAM‐CSE. A low‐velocity lid (VSof 4.4–4.55 km/s) is revealed in the upper 15–20 km of the mantle that extends ∼200 km from the margin, terminating at the Blake Spur Magnetic Anomaly (BSMA). East of the BSMA, velocities are fast (>4.6 km/s) and characteristic of typical oceanic mantle lithosphere. We interpret the low‐velocity lid as stretched continental mantle lithosphere embedded with up to ∼15% retained gabbro. This implies that the BSMA marks successful breakup and onset of seafloor spreading ∼170 Ma, consistent with ENAM‐CSE active‐source studies that argue for breakup ∼25 Myr later than previously thought. We observe margin‐parallel Rayleigh‐wave azimuthal anisotropy (2%–4% peak‐to‐peak) in the lithosphere that approximately correlates with absolute plate motion (APM) at the time of spreading. We hypothesize that lithosphere formed during ultra‐slow seafloor spreading records APM‐modified olivine fabric rather than spreading‐parallel fabric typical of higher spreading rates. This work highlights the importance of present‐day passive margins for improving understanding of the fundamental rift‐to‐drift transition.

     
    more » « less
  2. SUMMARY

    We present a new, 3-D model of seismic velocity and anisotropy in the Pacific upper mantle, PAC13E. We invert a data set of single-station surface-wave phase-anomaly measurements sensitive only to Pacific structure for the full set of 13 anisotropic parameters that describe surface-wave anisotropy. Realistic scaling relationships for surface-wave azimuthal anisotropy are calculated from petrological information about the oceanic upper mantle and are used to help constrain the model. The strong age dependence in the oceanic velocities associated with plate cooling is also used as a priori information to constrain the model. We find strong radial anisotropy with vSH > vSV in the upper mantle; the signal peaks at depths of 100–160 km. We observe an age dependence in the depth of peak anisotropy and the thickness of the anisotropic layer, which both increase with seafloor age, but see little age dependence in the depth to the top of the radially anisotropic layer. We also find strong azimuthal anisotropy, which typically peaks in the asthenosphere. The azimuthal anisotropy at asthenospheric depths aligns better with absolute-plate-motion directions while the anisotropy within the lithosphere aligns better with palaeospreading directions. The relative strengths of radial and azimuthal anisotropy are consistent with A-type olivine fabric. Our findings are generally consistent with an explanation in which corner flow at the ridge leads to the development and freezing-in of anisotropy in the lithosphere, and shear between the lithosphere and underlying asthenosphere leads to anisotropy beneath the plate. We also observe large regions within the Pacific basin where the orientation of anisotropy and the absolute-plate-motion direction differ; this disagreement suggests the presence of shear in the asthenosphere that is not aligned with absolute-plate-motion directions. Azimuthal-anisotropy orientation rotates with depth; the depth of the maximum vertical gradient in the fast-axis orientation tends to be age dependent and agrees well with a thermally controlled lithosphere–asthenosphere boundary. We observe that azimuthal-anisotropy strength at shallow depths depends on half-spreading rate, with higher spreading rates associated with stronger anisotropy. Our model implies that corner flow is more efficient at aligning olivine to form lattice-preferred orientation anisotropy fabrics in the asthenosphere when the spreading rate at the ridge is higher.

     
    more » « less
  3. Abstract

    The Mackenzie Mountains (MMs) in the Yukon and Northwest Territories, Canada, are an enigmatic mountain range. They are currently uplifting (Leonard et al., 2008,https//doi.org/10.1029/2007JB005456), yet are about 700 km from the nearest plate boundary. Their arcuate shape is distinct and extends over 100 km eastward from the general trend of the Northern Canadian Cordillera. To better assess the cause and conditions of the current uplift, we processed ambient seismic noise data from a linear array of broadband seismographs crossing the mountains, along with other regional seismic stations, to estimate Rayleigh wave phase velocities between 6 and 40 s periods. From this, we estimated phase velocity dispersion and performed a tomographic inversion to estimateVS. Tomography reveals a low‐velocity structure that extends upward from the base of the ∼50–66 km thick lithosphere to the upper crust, and we hypothesize that inferred low density and low rigidity associated with theVSanomaly localizes the ongoing uplift and thrust‐dominated seismicity of the MMs. Additionally, we find relatively low crustal velocities that extend to the west of the MMs, suggesting that strain transfer from the Gulf of Alaska plate boundary plays a driving role as the crust translates to the northeast and buckles up against the craton consistent with the orogenic float hypothesis of Mazzotti and Hyndman (2002,https//doi.org/10.1130/0091-7613(2002)030〈0495:YCASTA〉2.0.CO;2). Finally, we observe lithospheric azimuthal anisotropy with an NW‐SE fast direction. This is nearly orthogonal to teleseismic shear wave splitting measurements in the central MMs, and suggests that asthenosphere flow and lithospheric strain are not aligned in this region.

     
    more » « less
  4. Abstract

    We use surface wave measurements to reveal anisotropy as a function of depth within the Juan de Fuca and Gorda plate system. Using a two‐plane wave method, we measure phase velocity and azimuthal anisotropy of fundamental mode Rayleigh waves, solving for anisotropic shear velocity. These surface wave measurements are jointly inverted with constraints fromSKSsplitting studies using a Markov chain approach. We show that the two data sets are consistent and present inversions that offer new constraints on the vertical distribution of strain beneath the plates and the processes at spreading centers. Anisotropy of the Juan de Fuca plate interior is strongest (~2.4%) in the low‐velocity zone between ~40‐ to 90‐km depth, with ENE direction driven by relative shear between plate motion and mantle return flow from the Cascadia subduction zone. In disagreement withPnmeasurements, weak (~1.1%) lithospheric anisotropy in Juan de Fuca is highly oblique to the expected ridge‐perpendicular direction, perhaps connoting complex intralithospheric fabrics associated with melt or off‐axis downwelling. In the Gorda microplate, strong shallow anisotropy (~1.9%) is consistent withPninversions and aligned with spreading and may be enhanced by edge‐driven internal strain. Weak anisotropy with ambiguous orientation in the low‐velocity zone can be explained by Gorda's youth and modest motion relative to the Pacific. Deeper (≥90 km) fabric appears controlled by regional flow fields modulated by the Farallon slab edge: anisotropy is strong (~1.8%) beneath Gorda, but absent beneath the Juan de Fuca, which is in the strain shadow of the slab.

     
    more » « less
  5. Abstract

    This study presents an azimuthally anisotropic shear wave velocity model of the crust and uppermost mantle beneath Alaska, based on Rayleigh wave phase speed observations from 10 to 80 s period recorded at more than 500 broadband stations. We test the hypothesis that a model composed of two homogeneous layers of anisotropy can explain these measurements. This “Two‐Layer Model” confines azimuthal anisotropy to the brittle upper crust along with the uppermost mantle from the Moho to 200 km depth. This model passes the hypothesis test for most of the region of study, from which we draw two conclusions. (a) The data are consistent with crustal azimuthal anisotropy being dominantly controlled by deformationally aligned cracks and fractures in the upper crust undergoing brittle deformation. (b) The data are also consistent with the uppermost mantle beneath Alaska and surroundings experiencing vertically coherent deformation. The model resolves several prominent features. (1) In the upper crust, fast directions are principally aligned with the orientation of major faults. (2) In the upper mantle, fast directions are aligned with the compressional direction in compressional tectonic domains and with the tensional direction in tensional domains. (3) The mantle fast directions located near the Alaska‐Aleutian subduction zone and the surrounding back‐arc area form a toroidal pattern that is consistent with mantle flow directions predicted by recent geodynamical models. Finally, the mantle anisotropy is remarkably consistent with SKS fast directions, but to fit SKS split times, anisotropy must extend below 200 km depth across most of the study region.

     
    more » « less