Abstract Natural decadal climate variability in the Pacific, such as the Pacific decadal oscillation (PDO) or the interdecadal Pacific oscillation (IPO), plays a powerful role in evolving global hydroclimate on decadal time scales. Recent generations of general circulation models (GCMs) have been found to simulate the spatial pattern of the PDO well but struggle to capture temporal variability on decadal time scales. To use GCMs to project future climate, we must understand the degree to which climate models can successfully reproduce historical PDO and IPO spatial patterns, temporal behavior, and influence on hydroclimate. We calculate PDO and IPO spatial patterns and time series using 16 models within the CMIP6 archive, all with large (n≥ 10) ensembles, and compare them to observations in an integrated assessment of models’ ability to represent Pacific decadal variability spatiotemporally. All models underestimate decadal variability in the PDO and IPO and have a westward bias in their PDO and IPO North Pacific SST anomalies. We also evaluate hydroclimate teleconnections of the PDO and IPO in models using PDO- and IPO-associated precipitation, circulation, low-cloud, and vapor pressure deficit anomalies. We show that models’ underpowered decadal variability in the Pacific is consistent with their inability to reproduce large-amplitude decadal swings in precipitation in southwestern North America and that models are virtually unable to produce a 30-yr precipitation trend in the southwest of the magnitude observed from 1982 to 2011. We emphasize the importance of model fidelity in simulating Pacific decadal variability for accurate representation of decadal-scale hydroclimate change in Pacific-teleconnected land regions.
more »
« less
Mechanisms of Low‐Frequency Oxygen Variability in the North Pacific
This study investigates the mechanisms of interannual and decadal variability of dissolved oxygen (O2) in the North Pacific using historical observations and a hindcast simulation using the Community Earth System Model. The simulated variability of upper ocean (200 m) O2is moderately correlated with observations where sampling density is relatively high. The dominant mode of O2variability explains 24.8% of the variance and is significantly correlated with the Pacific Decadal Oscillation (PDO) index (r = 0.68). Two primary mechanisms are hypothesized by which the PDO controls upper ocean O2variability. Vertical movement of isopycnals (“heave”) drives O2variations in the deep tropics; isopycnal surfaces are depressed in the eastern tropics under the positive (El Niño‐like) phase of PDO, leading to O2increases in the upper water column. In contrast to the tropics, changes in subduction are the primary control on extratropical O2variability. These hypotheses are tested by contrasting O2anomalies with the heave‐induced component of variability calculated from potential density anomalies. Isopycnal heave is the leading control on O2variability in the tropics, but heave alone cannot fully explain the amplitude of tropical O2variability, likely indicating reinforcing changes from the biological O2consumption. Midlatitude O2variability indeed reflects ocean ventilation downstream of the subduction region where O2anomalies are correlated with the depth of winter mixed layer. These mechanisms, synchronized with the PDO, yield a basin‐scale pattern of O2variability that are comparable in magnitude to the projected rates of ocean deoxygenation in this century under “unchecked” emission scenario.
more »
« less
- Award ID(s):
- 1737188
- PAR ID:
- 10453573
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Global Biogeochemical Cycles
- Volume:
- 33
- Issue:
- 2
- ISSN:
- 0886-6236
- Page Range / eLocation ID:
- p. 110-124
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Lowest events in Lake Titicaca’s water level (LTWL) significantly impact local ecosystems and the drinking water supply in Peru and Bolivia. However, the hydroclimatic mechanisms driving extreme lake-level lowstands remain poorly understood. To investigate these low lake-level events, we analyzed detrended monthly LTWL anomalies, sea surface temperature (SST) datasets covering the period 1921–2023. ERA5 reanalysis covers the period 1940–2023. A multiple linear regression model was developed to compute detrended LTWL anomalies, excluding multidecadal and residual components. Interdecadal Pacific Oscillation (IPO) and Pacific Decadal Oscillation (PDO) indices were also analyzed for the same period. Results indicate that 25% of all LTWL minima events have a short duration of <5 months, while the remaining 75% of all events have a long duration of more than 9 months, respectively. All long-lived LTWL minima events are associated with reduced moisture flow from the Amazon basin toward Lake Titicaca, but the large-scale forcing varies with the phase change of the decadal component in the 11–15 years band of the PDO (PDO11–15 years). Under warm PDO11–15 yearsphases, LTWL minima are driven by an enhanced South American low-level jet (SALLJ) caused by warm SST anomalies over the eastern Pacific Ocean. Warm SST anomalies over tropical North Atlantic and central Pacific cold events, which reinforce the cold PDO11–15 yearsphases, driving long-lived LTWL minima through the reduction of SALLJ. Conversely, long-lived LTWL minima events under neutral PDO11–15 yearsphases are caused by westerly flow anomalies confined to the Peruvian Altiplano. Therefore, PDO and IPO do not drive long-lived LTWL minima events because their relationship does not remain consistent over time. In conclusion, long-lived LTWL minima events exhibit a regional nature and are not driven by the PDO or IPO, as LTWL shows no consistent relationship with these decadal SST modes over time.more » « less
-
null (Ed.)Abstract Decadal sea surface temperature (SST) fluctuations in the North Atlantic Ocean influence climate over adjacent land areas and are a major source of skill in climate predictions. However, the mechanisms underlying decadal SST variability remain to be fully understood. This study isolates the mechanisms driving North Atlantic SST variability on decadal time scales using low-frequency component analysis, which identifies the spatial and temporal structure of low-frequency variability. Based on observations, large ensemble historical simulations, and preindustrial control simulations, we identify a decadal mode of atmosphere–ocean variability in the North Atlantic with a dominant time scale of 13–18 years. Large-scale atmospheric circulation anomalies drive SST anomalies both through contemporaneous air–sea heat fluxes and through delayed ocean circulation changes, the latter involving both the meridional overturning circulation and the horizontal gyre circulation. The decadal SST anomalies alter the atmospheric meridional temperature gradient, leading to a reversal of the initial atmospheric circulation anomaly. The time scale of variability is consistent with westward propagation of baroclinic Rossby waves across the subtropical North Atlantic. The temporal development and spatial pattern of observed decadal SST variability are consistent with the recent observed cooling in the subpolar North Atlantic. This suggests that the recent cold anomaly in the subpolar North Atlantic is, in part, a result of decadal SST variability.more » « less
-
Abstract Observations show that the teleconnection between the El Niño‐Southern Oscillation (ENSO) and the Asian summer monsoon (ASM) is non‐stationary. However, the underlying mechanisms are poorly understood due to inadequate availability of reliable, long‐term observations. This study uses two state‐of‐the‐art data assimilation‐based reconstructions of last millennium climate to examine changes in the ENSO–ASM teleconnection; we investigate how modes of (multi‐)decadal climate variability (namely, the Pacific Decadal Oscillation, PDO, and the Atlantic Multidecadal Oscillation, AMO) modulate the ENSO–ASM relationship. Our analyses reveal that the PDO exerts a more pronounced impact on ASM variability than the AMO. By comparing different linear regression models, we find that including the PDO in addition to ENSO cycles can improve prediction of the ASM, especially for the Indian summer monsoon. In particular, dry (wet) anomalies caused by El Niño (La Niña) over India become enhanced during the positive (negative) PDO phases due to a compounding effect. However, composite differences in the ENSO–ASM relationship between positive and negative phases of the PDO and AMO are not statistically significant. A significant influence of the PDO/AMO on the ENSO–ASM relationship occurred only over a limited period within the last millennium. By leveraging the long‐term paleoclimate reconstructions, we document and interrogate the non‐stationary nature of the PDO and AMO in modulating the ENSO–ASM relationship.more » « less
-
Abstract Using the Roemmich‐Gilson Argo data set, this study investigates variability of the Subtropical Underwater (STUW) and eastern Subtropical Mode Water (ESTMW) in the South Pacific during 2004–2020. The STUW volume decreased during 2004–2013 and increased during 2013–2020, while the volume of the ESTMW shows the opposite phase. On interannual time scales, there is also a significant negative correlation in volume between the STUW and ESTMW. This anti‐phase relationship is attributed to changes in their volumetric subduction rates, which are in turn closely related to variability in the mixed layer depth (MLD). ENSO directly contributes to variability of the subduction rates by modifying the MLD. Equatorward propagation of spiciness anomalies is identified along isopycnal surfaces of the STUW and ESTMW cores. These spiciness anomalies in the downstream region are correlated with changes in volume of both water masses, and significant spiciness anomalies can reach the tropical Pacific.more » « less
An official website of the United States government
