skip to main content


Title: Understanding Diameter and Length Effects in a Solution‐Processable Tellurium‐Poly(3,4‐Ethylenedioxythiophene) Polystyrene Sulfonate Hybrid Thermoelectric Nanowire Mesh
Abstract

Organic–inorganic hybrids offer great promise as solution‐processable thermoelectric materials. However, they have struggled to surpass the performance of their rigid inorganic counterparts due, in part, to a lack of synthetic control and limited understanding of how inorganic nanostructure dimensions impact overall charge transport. While it has been hypothesized that length, diameter, and aspect ratio (AR) all impact electronic transport in hybrid nanowires, the field lacks clarity on the relative role of each. In this study, the experimental parameter of ligand molecular weight (MW) is investigated as a synthetic knob for modulating nanowire dimensions, as well as the deconvolution of nanowire length versus diameter impacts on electron transport. By increasing ligand MW, larger nanowire AR dispersions occur and an optimal power factor of ≈130 μWm−1K−2is achieved for a modest AR of 73. Power factors of this magnitude are thought to only be achievable in ultrahigh AR systems; representing a 183% increase in performance over literature reports with similar AR. Additionally, nanowire diameter is demonstrated to be a far more sensitive parameter for enhancing performance than modulating length. This study provides improved fundamental insight into rational synthetic design avenues for future enhancements in the performance of hybrid materials.

 
more » « less
NSF-PAR ID:
10453593
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Electronic Materials
Volume:
7
Issue:
3
ISSN:
2199-160X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Recent development of dopant induced solubility control (DISC) patterning of polymer semiconductors has enabled direct‐write optical patterning of poly‐3‐hexylthiophene (P3HT) with diffraction limited resolution. Here, the optical DISC patterning technique to the most simple circuit element, a wire, is applied. Optical patterning of P3HT and P3HT doped with the molecular dopant 2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane (F4TCNQ) wires with dimensions of 20–70 nm thickness, 200–900 nm width, and 40 μm length is demonstrated. In addition, optical patterning of wire patterns like “L” bends and “T” junctions without changing the diameter or thickness of the wires at the junctions is demonstrated. The wires themselves show up to 0.034 S cm‐1conductance when sequentially doped. It is also demonstrated that a P3HT nanowire can be doped, de‐doped, and re‐doped from solution without changing the dimension of the wire. The combined abilities to optically pattern and reversibly dope a polymer semiconductor represents a full suite of patterning steps equivalent to photolithography for inorganic semiconductors.

     
    more » « less
  2. Abstract

    Perylene diimide (PDI) derivatives hold great promise as stable, solution‐printable n‐type organic thermoelectric materials, but as of yet lack sufficient electrical conductivity to warrant further development. Hybrid PDI‐inorganic nanomaterials have the potential to leverage these physical advantages while simultaneously achieving higher thermoelectric performance. However, lack of molecular level insight precludes design of high performing PDI‐based hybrid thermoelectrics. Herein, the first explicit crystal structure of these materials is reported, providing previously inaccessible insight into the relationship between their structure and thermoelectric properties. Allowing this molecular level insight to drive novel methodologies, simple solution‐based techniques to prepare PDI hybrid thermoelectric inks with up to 20‐fold enhancement in thermoelectric power factor over the pristine molecule (up to 17.5 µW mK−2) is presented. This improved transport is associated with reorganization of organic molecules on the surface of inorganic nanostructures. Additionally, outstanding mechanical flexibility is demonstrated by fabricating solution‐printed thermoelectric modules with innovative folded geometries. This work provides the first direct evidence that packing/organization of organic molecules on inorganic nanosurfaces is the key to effective thermoelectric transport in nanohybrid systems.

     
    more » « less
  3. Abstract

    Ultrasound‐powered implants (UPIs) represent cutting edge power sources for implantable medical devices (IMDs), as their powering strategy allows for extended functional lifetime, decreased size, increased implant depth, and improved biocompatibility. IMDs are limited by their reliance on batteries. While batteries proved a stable power supply, batteries feature relatively large sizes, limited life spans, and toxic material compositions. Accordingly, energy harvesting and wireless power transfer (WPT) strategies are attracting increasing attention by researchers as alternative reliable power sources. Piezoelectric energy scavenging has shown promise for low power applications. However, energy scavenging devices need be located near sources of movement, and the power stream may suffer from occasional interruptions. WPT overcomes such challenges by more stable, on‐demand power to IMDs. Among the various forms of WPT, ultrasound powering offers distinct advantages such as low tissue‐mediated attenuation, a higher approved safe dose (720 mW cm−2), and improved efficiency at smaller device sizes. This study presents and discusses the state‐of‐the‐art in UPIs by reviewing piezoelectric materials and harvesting devices including lead‐based inorganic, lead‐free inorganic, and organic polymers. A comparative discussion is also presented of the functional material properties, architecture, and performance metrics, together with an overview of the applications where UPIs are being deployed.

     
    more » « less
  4. Abstract

    Tandem photoelectrochemical water splitting cells utilizing crystalline Si and metal oxide photoabsorbers are promising for low‐cost solar hydrogen production. This study presents a device design and a scalable fabrication scheme for a tandem heterostructure photoanode: p+n black silicon (Si)/SnO2interface/W‐doped bismuth vanadate (BiVO4)/cobalt phosphate (CoPi) catalyst. The black‐Si not only provides a substantial photovoltage of 550 mV, but it also serves as a conductive scaffold to decrease charge transport pathlengths within the W‐doped BiVO4shell. When coupled with cobalt phosphide (CoP) nanoparticles as hydrogen evolution catalysts, the device demonstrates spontaneous water splitting without employing any precious metals, achieving an average solar‐to‐hydrogen efficiency of 0.45% over the course of an hour at pH 7. This fabrication scheme offers the modularity to optimize individual cell components, e.g., Si nanowire dimensions and metal oxide film thickness, involving steps that are compatible with fabricating monolithic devices. This design is general in nature and can be readily adapted to novel, higher performance semiconducting materials beyond BiVO4as they become available, which will accelerate the process of device realization.

     
    more » « less
  5.  
    more » « less