skip to main content


Title: Repeated measures random forests (RMRF): Identifying factors associated with nocturnal hypoglycemia
Abstract

Nocturnal hypoglycemia is a common phenomenon among patients with diabetes and can lead to a broad range of adverse events and complications. Identifying factors associated with hypoglycemia can improve glucose control and patient care. We propose a repeated measures random forest (RMRF) algorithm that can handle nonlinear relationships and interactions and the correlated responses from patients evaluated over several nights. Simulation results show that our proposed algorithm captures the informative variable more often than naïvely assuming independence. RMRF also outperforms standard random forest and extremely randomized trees algorithms. We demonstrate scenarios where RMRF attains greater prediction accuracy than generalized linear models. We apply the RMRF algorithm to analyze a diabetes study with 2524 nights from 127 patients with type 1 diabetes. We find that nocturnal hypoglycemia is associated with HbA1c, bedtime blood glucose (BG), insulin on board, time system activated, exercise intensity, and daytime hypoglycemia. The RMRF can accurately classify nights at high risk of nocturnal hypoglycemia.

 
more » « less
Award ID(s):
1633130
NSF-PAR ID:
10453601
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Biometrics
Volume:
77
Issue:
1
ISSN:
0006-341X
Format(s):
Medium: X Size: p. 343-351
Size(s):
["p. 343-351"]
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we provide an approach to data-driven control for artificial pancreas systems by learning neural network models of human insulin-glucose physiology from available patient data and using a mixed integer optimization approach to control blood glucose levels in real-time using the inferred models. First, our approach learns neural networks to predict the future blood glucose values from given data on insulin infusion and their resulting effects on blood glucose levels. However, to provide guarantees on the resulting model, we use quantile regression to fit multiple neural networks that predict upper and lower quantiles of the future blood glucose levels, in addition to the mean. Using the inferred set of neural networks, we formulate a model-predictive control scheme that adjusts both basal and bolus insulin delivery to ensure that the risk of harmful hypoglycemia and hyperglycemia are bounded using the quantile models while the mean prediction stays as close as possible to the desired target. We discuss how this scheme can handle disturbances from large unannounced meals as well as infeasibilities that result from situations where the uncertainties in future glucose predictions are too high. We experimentally evaluate this approach on data obtained from a set of 17 patients over a course of 40 nights per patient. Furthermore, we also test our approach using neural networks obtained from virtual patient models available through the UVA-Padova simulator for type-1 diabetes. 
    more » « less
  2. Background:

    Remote patient monitoring (RPM) programs augment type 1 diabetes (T1D) care based on retrospective continuous glucose monitoring (CGM) data. Few methods are available to estimate the likelihood of a patient experiencing clinically significant hypoglycemia within one week.

    Methods:

    We developed a machine learning model to estimate the probability that a patient will experience a clinically significant hypoglycemic event, defined as CGM readings below 54 mg/dL for at least 15 consecutive minutes, within one week. The model takes as input the patient’s CGM time series over a given week, and outputs the predicted probability of a clinically significant hypoglycemic event the following week. We used 10-fold cross-validation and external validation (testing on cohorts different from the training cohort) to evaluate performance. We used CGM data from three different cohorts of patients with T1D: REPLACE-BG (226 patients), Juvenile Diabetes Research Foundation (JDRF; 355 patients) and Tidepool (120 patients).

    Results:

    In 10-fold cross-validation, the average area under the receiver operating characteristic curve (ROC-AUC) was 0.77 (standard deviation [SD]: 0.0233) on the REPLACE-BG cohort, 0.74 (SD: 0.0188) on the JDRF cohort, and 0.76 (SD: 0.02) on the Tidepool cohort. In external validation, the average ROC-AUC across the three cohorts was 0.74 (SD: 0.0262).

    Conclusions:

    We developed a machine learning algorithm to estimate the probability of a clinically significant hypoglycemic event within one week. Predictive algorithms may provide diabetes care providers using RPM with additional context when prioritizing T1D patients for review.

     
    more » « less
  3. We present a multitask learning approach to the problem of hypoglycemia (HG) prediction in diabetes. The approach is based on a state-of-the-art time series forecasting model, N-BEATS, and extends it by adding a classification task so that the model performs both glucose forecasting (i.e., predicting future glucose values) and HG prediction (i.e., probability of future HG events sometime within the prediction horizon). We also propose an alternative loss function that penalizes forecasting errors in the HG range. We evaluate the approach on a dataset containing over 1.6M recordings from 112 patients with type 1 diabetes who wore a continuous glucose monitor (CGM) for 90 days. Our results show that the classification branch significantly outperforms the forecasting branch on the problem of HG prediction, and that the new loss function is more effective at reducing forecasting errors in the HG range than multi-task learning. 
    more » « less
  4. Abstract

    Type 1 and advanced type 2 diabetes treatment involves daily injections or continuous infusion of exogenous insulin aimed at regulating blood glucose levels in the normoglycemic range. However, current options for insulin therapy are limited by the risk of hypoglycemia and are associated with suboptimal glycemic control outcomes. Therefore, a range of glucose‐responsive components that can undergo changes in conformation or show alterations in intermolecular binding capability in response to glucose stimulation has been studied for ultimate integration into closed‐loop insulin delivery or “smart insulin” systems. Here, an overview of the evolution and recent progress in the development of molecular approaches for glucose‐responsive insulin delivery systems, a rapidly growing subfield of precision medicine, is presented. Three central glucose‐responsive moieties, including glucose oxidase, phenylboronic acid, and glucose‐binding molecules are examined in detail. Future opportunities and challenges regarding translation are also discussed.

     
    more » « less
  5. Background: Monitoring glucose excursions is important in diabetes management. This can be achieved using continuous glucose monitors (CGMs). However, CGMs are expensive and invasive. Thus, alternative low-cost noninvasive wearable sensors capable of predicting glycemic excursions could be a game changer to manage diabetes. Methods: In this article, we explore two noninvasive sensor modalities, electrocardiograms (ECGs) and accelerometers, collected on five healthy participants over two weeks, to predict both hypoglycemic and hyperglycemic excursions. We extract 29 features encompassing heart rate variability features from the ECG, and time- and frequency-domain features from the accelerometer. We evaluated two machine-learning approaches to predict glycemic excursions: a classification model and a regression model. Results: The best model for both hypoglycemia and hyperglycemia detection was the regression model based on ECG and accelerometer data, yielding 76% sensitivity and specificity for hypoglycemia and 79% sensitivity and specificity for hyperglycemia. This had an improvement of 5% in sensitivity and specificity for both hypoglycemia and hyperglycemia when compared with using ECG data alone. Conclusions: Electrocardiogram is a promising alternative not only to detect hypoglycemia but also to predict hyperglycemia. Supplementing ECG data with contextual information from accelerometer data can improve glucose prediction. 
    more » « less