Abstract This study assesses the predictive skill of eight North American Multimodel Ensemble (NMME) models in predicting the Indian Ocean dipole (IOD). We find that the forecasted ensemble-mean IOD–El Niño–Southern Oscillation (ENSO) relationship deteriorates away from the observed relationship with increasing lead time, which might be one reason that limits the IOD predictive skill in coupled models. We are able to improve the IOD predictive skill using a recently developed stochastic dynamical model (SDM) forced by forecasted ENSO conditions. The results are consistent with the previous result that operational IOD predictability beyond persistence at lead times beyond one season is mostly controlled by ENSO predictability and the signal-to-noise ratio of the Indo-Pacific climate system. The multimodel ensemble (MME) investigated here is found to be of superior skill compared to each individual model at most lead times. Importantly, the skill of the SDM IOD predictions forced with forecasted ENSO conditions were either similar or better than those of the MME IOD forecasts. Moreover, the SDM forced with observed ENSO conditions exhibits significantly higher IOD prediction skill than the MME at longer lead times, suggesting the large potential skill increase that could be achieved by improving operational ENSO forecasts. We find that both cold and warm biases of the predicted Niño-3.4 index may cause false alarms of negative and positive IOD events, respectively, in NMME models. Many false alarms for IOD forecasts at lead times longer than one season in the original forecasts disappear or are significantly reduced in the SDM forced by forecasted ENSO conditions.
more »
« less
Improved Predictability of the Indian Ocean Dipole Using Seasonally Modulated ENSO Forcing Forecasts
Abstract Despite recent progress in seasonal forecast systems, the predictive skill for the Indian Ocean Dipole (IOD) remains typically limited to a lead time of one season or less in both dynamical and empirical models. Here we develop a simple stochastic‐dynamical model (SDM) to predict the IOD using seasonally modulated El Niño–Southern Oscillation (ENSO) forcing together with a seasonally modulated Indian Ocean coupled ocean‐atmosphere feedback. The SDM, with either observed or forecasted ENSO forcing, exhibits generally higher skill and longer lead times for predicting IOD events than the operational Climate Forecast System version 2 and the Scale Interaction Experiment–Frontier system. The improvements mainly originate from better prediction of ENSO‐dependent IOD events and from reducing false alarms. These results affirm our hypothesis that operational IOD predictability beyond persistence is largely controlled by ENSO predictability and the signal‐to‐noise ratio of the system. Therefore, potential future ENSO improvements in models should translate to more skillful IOD predictions.
more »
« less
- PAR ID:
- 10453628
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 46
- Issue:
- 16
- ISSN:
- 0094-8276
- Page Range / eLocation ID:
- p. 9980-9990
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Prediction of Indian summer monsoon rainfall (ISMR) is at the heart of tropical climate prediction. Despite enormous progress having been made in predicting ISMR since 1886, the operational forecasts during recent decades (1989–2012) have little skill. Here we show, with both dynamical and physical–empirical models, that this recent failure is largely due to the models’ inability to capture new predictability sources emerging during recent global warming, that is, the development of the central-Pacific El Nino-Southern Oscillation (CP–ENSO), the rapid deepening of the Asian Low and the strengthening of North and South Pacific Highs during boreal spring. A physical–empirical model that captures these new predictors can produce an independent forecast skill of 0.51 for 1989–2012 and a 92-year retrospective forecast skill of 0.64 for 1921–2012. The recent low skills of the dynamical models are attributed to deficiencies in capturing the developing CP–ENSO and anomalous Asian Low. The results reveal a considerable gap between ISMR prediction skill and predictability.more » « less
-
Abstract The El Niño‐Southern Oscillation (ENSO) phenomenon—the dominant source of climate variability on seasonal to multi‐year timescales—is predictable a few seasons in advance. Forecast skill at longer multi‐year timescales has been found in a few models and forecast systems, but the robustness of this predictability across models has not been firmly established owing to the cost of running dynamical model predictions at longer lead times. In this study, we use a massive collection of multi‐model hindcasts performed using model analogs to show that multi‐year ENSO predictability is robust across models and arises predominantly due to skillful prediction of multi‐year La Nina events following strong El Niño events.more » « less
-
Abstract The Tropical North Atlantic (TNA) is characterized by significant interannual variability in sea surface temperature (SST), which is phase‐locked to the boreal spring. In this study, the phase‐locking of TNA is investigated by adopting a linear stochastic‐dynamical model (SDM) using seasonally modulated TNA feedbacks together with the seasonal modulation of ENSO forcing. In the observations, the role of local TNA feedbacks and ENSO forcing in TNA phase‐locking are equivalently important with both preferring the peak of TNA variability to appear in the boreal spring. Besides, the seasonal modulation of TNA feedbacks and ENSO forcing strength are both mainly controlled by thermodynamic processes. In most climate models, the contribution of ENSO on TNA phase‐locking is weaker than that in observations. The strength of ENSO‐related TNA phase‐locking is highly correlated with the relationship between ENSO and TNA, which is mainly determined by the amplitude of ENSO and its teleconnection patterns.more » « less
-
Abstract Producing accurate weather prediction beyond two weeks is an urgent challenge due to its ever-increasing socioeconomic value. The Madden-Julian Oscillation (MJO), a planetary-scale tropical convective system, serves as a primary source of global subseasonal (i.e., targeting three to four weeks) predictability. During the past decades, operational forecasting systems have improved substantially, while the MJO prediction skill has not yet reached its potential predictability, partly due to the systematic errors caused by imperfect numerical models. Here, to improve the MJO prediction skill, we blend the state-of-the-art dynamical forecasts and observations with a Deep Learning bias correction method. With Deep Learning bias correction, multi-model forecast errors in MJO amplitude and phase averaged over four weeks are significantly reduced by about 90% and 77%, respectively. Most models show the greatest improvement for MJO events starting from the Indian Ocean and crossing the Maritime Continent.more » « less