skip to main content

Title: Improved Predictability of the Indian Ocean Dipole Using a Stochastic Dynamical Model Compared to the North American Multimodel Ensemble Forecast
Abstract This study assesses the predictive skill of eight North American Multimodel Ensemble (NMME) models in predicting the Indian Ocean dipole (IOD). We find that the forecasted ensemble-mean IOD–El Niño–Southern Oscillation (ENSO) relationship deteriorates away from the observed relationship with increasing lead time, which might be one reason that limits the IOD predictive skill in coupled models. We are able to improve the IOD predictive skill using a recently developed stochastic dynamical model (SDM) forced by forecasted ENSO conditions. The results are consistent with the previous result that operational IOD predictability beyond persistence at lead times beyond one season is mostly controlled by ENSO predictability and the signal-to-noise ratio of the Indo-Pacific climate system. The multimodel ensemble (MME) investigated here is found to be of superior skill compared to each individual model at most lead times. Importantly, the skill of the SDM IOD predictions forced with forecasted ENSO conditions were either similar or better than those of the MME IOD forecasts. Moreover, the SDM forced with observed ENSO conditions exhibits significantly higher IOD prediction skill than the MME at longer lead times, suggesting the large potential skill increase that could be achieved by improving operational ENSO forecasts. We find that more » both cold and warm biases of the predicted Niño-3.4 index may cause false alarms of negative and positive IOD events, respectively, in NMME models. Many false alarms for IOD forecasts at lead times longer than one season in the original forecasts disappear or are significantly reduced in the SDM forced by forecasted ENSO conditions. « less
; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Weather and Forecasting
Page Range or eLocation-ID:
379 to 399
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Forecasting the El Niño-Southern Oscillation (ENSO) has been a subject of vigorous research due to the important role of the phenomenon in climate dynamics and its worldwide socioeconomic impacts. Over the past decades, numerous models for ENSO prediction have been developed, among which statistical models approximating ENSO evolution by linear dynamics have received significant attention owing to their simplicity and comparable forecast skill to first-principles models at short lead times. Yet, due to highly nonlinear and chaotic dynamics (particularly during ENSO initiation), such models have limited skill for longer-term forecasts beyond half a year. To resolve this limitation, here we employ a new nonparametric statistical approach based on analog forecasting, called kernel analog forecasting (KAF), which avoids assumptions on the underlying dynamics through the use of nonlinear kernel methods for machine learning and dimension reduction of high-dimensional datasets. Through a rigorous connection with Koopman operator theory for dynamical systems, KAF yields statistically optimal predictions of future ENSO states as conditional expectations, given noisy and potentially incomplete data at forecast initialization. Here, using industrial-era Indo-Pacific sea surface temperature (SST) as training data, the method is shown to successfully predict the Niño 3.4 index in a 1998–2017 verification period out tomore »a 10-month lead, which corresponds to an increase of 3–8 months (depending on the decade) over a benchmark linear inverse model (LIM), while significantly improving upon the ENSO predictability “spring barrier”. In particular, KAF successfully predicts the historic 2015/16 El Niño at initialization times as early as June 2015, which is comparable to the skill of current dynamical models. An analysis of a 1300-yr control integration of a comprehensive climate model (CCSM4) further demonstrates that the enhanced predictability afforded by KAF holds over potentially much longer leads, extending to 24 months versus 18 months in the benchmark LIM. Probabilistic forecasts for the occurrence of El Niño/La Niña events are also performed and assessed via information-theoretic metrics, showing an improvement of skill over LIM approaches, thus opening an avenue for environmental risk assessment relevant in a variety of contexts.

    « less
  2. null (Ed.)
    Abstract Using a high-resolution atmospheric general circulation model simulation of unprecedented ensemble size, we examine potential predictability of monthly anomalies under El Niño Southern Oscillation (ENSO) forcing and back-ground internal variability. This study reveals the pronounced month-to-month evolution of both the ENSO forcing signal and internal variability. Internal variance in upper-level geopotential height decreases (∼ 10%) over the North Pacific during El Niño as the westerly jet extends eastward, allowing forced signals to account for a greater fraction of the total variability, and leading to increased potential predictability. We identify February and March of El Niño years as the most predictable months using a signal-to-noise analysis. In contrast, December, a month typically included in teleconnection studies, shows little-to-no potential predictability. We show that the seasonal evolution of SST forcing and variability leads to significant signal-to-noise relationships that can be directly linked to both upper-level and surface variable predictability for a given month. The stark changes in forced response, internal variability, and thus signal-to-noise across an ENSO season indicate that subseasonal fields should be used to diagnose potential predictability over North America associated with ENSO teleconnections. Using surface air temperature and precipitation as examples, this study provides motivation to pursue ‘windowsmore »of forecast opportunity’, in which statistical skill can be developed, tested, and leveraged to determine times and regions in which this skill may be elevated.« less
  3. Abstract El Niño and La Niña events show a wide range of durations over the historical record. The predictability of event duration has remained largely unknown, although multiyear events could prolong their climate impacts. To explore the predictability of El Niño and La Niña event duration, multiyear ensemble forecasts are conducted with the Community Earth System Model, version 1 (CESM1). The 10–40-member forecasts are initialized with observed oceanic conditions on 1 March, 1 June, and 1 November of each year during 1954–2015; ensemble spread is created through slight perturbations to the atmospheric initial conditions. The CESM1 predicts the duration of individual El Niño and La Niña events with lead times ranging from 6 to 25 months. In particular, forecasts initialized in November, near the first peak of El Niño or La Niña, can skillfully predict whether the event continues through the second year with 1-yr lead time. The occurrence of multiyear La Niña events can be predicted even earlier with lead times up to 25 months, especially when they are preceded by strong El Niño. The predictability of event duration arises from initial thermocline depth anomalies in the equatorial Pacific, as well as sea surface temperature anomalies within and outsidemore »the tropical Pacific. The forecast error growth, on the other hand, originates mainly from atmospheric variability over the North Pacific in boreal winter. The high predictability of event duration indicates the potential for extending 12-month operational forecasts of El Niño and La Niña events by one additional year.« less
  4. Abstract

    Tropical cyclone (TC) landfalls over the U.S. mid-Atlantic region, which include the so-called Sandy-like, or westward-curving, tracks, are among the most infrequent landfalls along the U.S. East Coast. However, when these events do occur, the resulting economic and societal consequences can be devastating. A recent example is Hurricane Sandy in 2012. Multimodel ensemble seasonal hindcasts conducted with a high-atmospheric-resolution coupled prediction system based on the ECMWF operational model (Project Minerva) are used here to compile the statistics of these rare events. Minerva hindcasts are found to exhibit skill in reproducing climatological characteristics of the mid-Atlantic TC landfalls particularly at the highest atmospheric horizontal spectral resolution of T1279 (16-km grid spacing). Historical forecasts are further interrogated to identify regional and large-scale environmental conditions associated with these rare TC tracks to better quantify their predictability on synoptic time scales, and their dependence on model resolution. Evolution of the large-scale atmospheric flow patterns leading to mid-Atlantic TC landfalls is analyzed using local finite-amplitude wave activity (LWA). We have identified large-amplitude quasi-stationary features in the LWA and sea surface temperature (SST) anomaly distributions that persist up to about a week leading to these land-falling events. A statistical model utilizing indices based on themore »LWA and SST anomalies as predictors is developed that exhibits skill (mostly at T1279) in predicting mid-Atlantic TC landfalls several days in advance. Implications of these results for longer time-scale predictions of mid-Atlantic TC landfalls including climate change projections are discussed.

    « less
  5. Abstract Following the interdecadal shift of El Niño–Southern Oscillation (ENSO) properties that occurred in 1976/77, another regime shift happened in 1999/2000 that featured a decrease of variability and an increase in ENSO frequency. Specifically, the frequency spectrum of Niño-3.4 sea surface temperature shifted from dominant variations at quasi-quadrennial (~4 yr) periods during 1979–99 to weaker fluctuations at quasi-biennial (~2 yr) periods during 2000–18. Also, the spectrum of warm water volume (WWV) index had almost no peak in 2000–18, implying a nearly white noise process. The regime shift was associated with an enhanced zonal gradient of the mean state, a westward shift in the atmosphere–ocean coupling in the tropical Pacific, and an increase in the static stability of the troposphere. This shift had several important implications. The whitening of the subsurface ocean temperature led to a breakdown of the relationship between WWV and ENSO, reducing the efficacy of WWV as a key predictor for ENSO and thus leading to a decrease in ENSO prediction skill. Another consequence of the higher ENSO frequency after 1999/2000 was that the forecasted peak of sea surface temperature anomaly often lagged that observed by several months, and the lag increased with the lead time. The ENSOmore »regime shift may have altered ENSO influences on extratropical climate. Thus, the regime shift of ENSO in 1999/2000 as well as the model default may account for the higher false alarm and lower skill in predicting ENSO since 1999/2000.« less