skip to main content


Title: Interactions of CO 2 with cluster models of metal–organic frameworks
Abstract

The interactions between carbon dioxide and cluster models of coordinatively unsaturated metal–organic frameworks (MOFs) were studied using a variety of ab initio methods. Three metal species and three organic linkers in four structures were considered in these models as a representation of the tunable nature of MOFs and the potential multireference character of such systems. Common single‐reference methods, such as MP2 and CCSD(T), were compared with multireference methods based on complete active space self‐consistent field theory, going as far as multireference configuration interaction with single and double excitations (MRCISD). Special consideration is taken to avoid issues of size inconsistency in the CI results, where an alternate reference is used in the interaction energy definition. The benchmark values are used to judge the adequacy of a selection of density functionals for the current systems. Symmetry‐adapted perturbation theory (SAPT) decomposition was performed to elucidate the important effects that comprise the binding interactions. The systems proved to have very limited multireference character, and MP2 values were closer to the CCSD(T) benchmark than the more difficult MRCISD results. Though the SAPT total energies prove to be relatively poor approximations to the benchmark interaction energies, they reveal (in most cases) the correct trends with respect to the choice of the metal. The SAPT energy decompositions indicate that theCO2binding is primarily driven by electrostatics, but induction and dispersion also provide sizable, and quite similar, attractive contributions. Importantly, the small diformate model provides a faithful representation of complexes with large aromatic linkers, both in terms of the total interaction energy and the SAPT decomposition.

 
more » « less
NSF-PAR ID:
10453634
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Computational Chemistry
Volume:
41
Issue:
23
ISSN:
0192-8651
Page Range / eLocation ID:
p. 2066-2083
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The structures of zinc carbene ZnCH2and zinc carbyne HZnCH, and the conversion transition states between them are optimized at B3LYP/aug‐cc‐pVTZ, MP2/aug‐cc‐pVTZ, and CCSD/aug‐cc‐pVTZ levels of theory. The thermodynamic energies with CCSD(T) method are further extrapolated to basis set limit through a series of basis sets of aug‐cc‐pVXZ (X=D, T, Q, 5). The Zn−C bonding characteristics are interpreted by molecular plots, Laplacian of density plots, the integrated delocalization indices, net atomic charges, and derived atomic hardness. On the one hand, the studies demonstrated the efficiency of DFT method in structure optimizations and the accuracy of CBS method in obtaining thermodynamic energies; On the other hand, the density analysis of CCSD/aug‐cc‐pVDZ density demonstrates that both the sharing interaction and ionic interaction are important in ZnCH2ad HZnCH. The3B1state of ZnCH2is the global minimum and formed in visible light, but its small bond dissociation energy (47.0 kcal/mol) cannot keep the complex intact under UV light (79.4–102.1 kcal/mol). However, the3Σstate of HZnCH can survive the UV light due to the greater Zn−C dissociation energy (100.7 kcal/mol). The delocalization indices of Zn…C in both3B1of ZnCH2(0.777) and the3Σstate of HZnCH (0.785) are close to the delocalization index of the single C−C bond of ethane (0.841), i. e. the nomenclature of Zinc carbene and Zinc carbyne is incorrect. The stronger Zn−C bond in the3Σstate of HZnCH than in the3B1state of ZnCH2can be attributed to the larger charge separation in the former. It was found that the Zn−C bonds in related Zinc organic compounds were also single bonds no matter whether the organic groups are CR, CR2, or CR3. The ionic interactions were discussed in terms of the atomic hardness that were in turn related to ionization energy and electron affinity. The unique combination of covalent and ionic characteristics in the Zn−C bonds of organic Zinc compounds could be the origin of many interesting applications of organic Zinc reagents.

     
    more » « less
  2. Abstract

    The global minima of urea and thiourea were characterized along with other low‐lying stationary points. Each structure was optimized with the CCSD(T) method and triple‐ζcorrelation consistent basis sets followed by harmonic vibrational frequency computations. Relative energies evaluated near the complete basis set limit with both canonical and explicitly correlated CCSD(T) techniques reveal several subtle but important details about both systems. These computations resolve a discrepancy by demonstrating that the electronic energy of the C2vsecond‐order saddle point of urea lies at least 1.5 kcal mol−1above the C2global minimum regardless of whether the structures were optimized with MP2, CCSD, or CCSD(T). Additionally, urea effectively has one minimum instead of two because the electronic barrier for inversion at one amino group in the Cslocal minimum vanishes at the CCSD(T) CBS limit. Characterization of both systems with the same ab initio methods and large basis sets conclusively establishes that the electronic barriers to inversion at one or both NH2groups in thiourea are appreciably smaller than in urea. CCSDT(Q)/cc‐pVTZ computations show higher‐order electron correlation effects have little impact on the relative energies and are consistently offset by core correlation effects of opposite sign and comparable magnitude.

     
    more » « less
  3. Context. Formaldehyde is a potential biogenic precursor involved in prebiotic chemical evolution. The cold conditions of the interstellar medium (ISM) allow H 2 CO to be reactive, playing a significant role as a chemical intermediate in formation pathways leading to interstellar complex organic molecules. However, gas-phase molecular formation mechanisms in cold regions of the ISM are poorly understood. Aims. We computationally determine the most favored gas-phase molecular formation mechanisms at local thermodynamic equilibrium conditions that can produce the detected amounts of H 2 CO in diffuse molecular clouds (DMCs), in dark, cold, and dense molecular clouds (DCDMCs), and in three regions of circumstellar envelopes of low-mass protostars (CELMPs). Methods. The potential energy surfaces, thermodynamic functions, and single-point energies for transition states were calculated at the CCSD(T)-F12/cc-pVTZ-F12 and MP2/aug-cc-pVDZ levels of theory and basis sets. Molecular thermodynamics and related partition functions were obtained by applying the Maxwell-Boltzmann quantum statistics theory from energies computed at CCSD(T)-F12/cc-pVTZ-F12 with corrections for zero-point energy. A literature review on detected abundances of reactants helped us to propose the most favorable formation routes. Results. The most probable reactions that produce H 2 CO in cold astrophysical regions are: 1 CH 2 + ⋅ 3 O 2 → 1 H 2 CO + O⋅( 3 P) in DMCs, ⋅ 3 CH 2 + ⋅ 3 O 2 → 1 H 2 CO + ⋅O( 3 P) in DCDMCs, and ⋅CH 3 + ⋅O( 3 P) → 1 H 2 CO + ⋅H in region III, ⋅CH 3 +⋅O( 1 D) → 1 H 2 CO + ⋅H in region II, and 1 CH 2 + ⋅ 3 O 2 → 1 H 2 CO + ⋅O( 3 P) in region I belonging to CELMPs. Conclusions. Quantum chemical calculations suggest that the principal carbonaceous precursors of H 2 CO in cold regions for the gas-phase are CH 2 (a 1 A 1 ), and ⋅CH 2 (X 3 B 1 ) combined with ⋅O 2 ( 3 Σ g ) and ⋅CH 3 ( 2 A ” ) + ⋅O( 3 P) / O( 1 D). Reactions based on more complex reagents yield less effective thermodynamics in the gas-phase H 2 CO molecular formation. 
    more » « less
  4. Nitroxyl (HNO) and hydrogen peroxide have both been implicated in a variety of reactions relevant to environmental and physiological processes and may contribute to a unique, unexplored, pathway for the production of nitrous acid (HONO) in soil. To investigate the potential for this reaction, we report an in-depth investigation of the reaction pathway of H 2 O 2 and HNO forming HONO and water. We find the breaking of the peroxide bond and a coupled proton transfer in the first step leads to hydrogen nitryl (HNO 2 ) and an endogenous water, with an extrapolated NEVPT2 (multireference perturbation theory) barrier of 29.3 kcal mol −1 . The first transition state is shown to possess diradical character linking the far peroxide oxygen to the bridging, reacting, peroxide oxygen. The energy of this first step, when calculated using hybrid density functional theory, is shown to depend heavily on the amount of Hartree–Fock exchange in the functional, with higher amounts leading to a higher barrier and more diradical character. Additionally, high amounts of spin contamination cause CCSD(T) to significantly overestimate the TS1 barrier with a value of 36.2 kcal mol −1 when using the stable UHF wavefunction as the reference wavefunction. However, when using the restricted Hartree–Fock reference wavefunction, the TS1 CCSD(T) energy is lowered to yield a barrier of 31.2 kcal mol −1 , in much better agreement with the NEVPT2 result. The second step in the reaction is the isomerization of HNO 2 to trans -HONO through a Grotthuss-like mechanism accepting a proton from and donating a proton to the endogenous water. This new mechanism for the isomerization of HNO 2 is shown to have an NEVPT2 barrier of 23.3 kcal mol −1 , much lower than previous unimolecular estimates not including an explicit water. Finally, inclusion of an additional explicit water is shown to lower the HNO 2 isomerization barrier even further. 
    more » « less
  5. Bond dissociation energies (BDE) are key descriptors for molecules and are among the most sought-after properties in chemistry. Despite their importance, the accurate prediction of BDE’s for transition metal species can be particularly daunting for both experiment and computation. Experimental data has been limited and, when available, often has large error bars, making the critical evaluation and identification of suitable computational methods difficult. However, recent advancements in the experimental determination of BDE’s with techniques such as Velocity Map Imaging and 2 Photon Ionization now provide useful gauges for computational strategies and new methodologies, providing energies with unprecedented accuracies. The vanadium diatomics (VX, X=B, C, N, O, F, Al, Si, P, S, Cl) have been challenging for computational chemistry methods, and, thus, a new experimental gauge enables methods to be reevaluated and developed for these species. Herein, the super-correlation consistent Composite (super-ccCA or s-ccCA), a new thermochemical scheme centered around CCSD(T)/complete basis set (CBS) limit computations with additional contributions that account for scalar-relativistic effects, and coupled cluster contributions beyond CCSD(T) up to quintuple excitations has been considered. The agreement between determinations made by the s-ccCA scheme and by recent experiment is excellent, demonstrating the utility of the new approach in addressing challenging metal systems, even those of multireference nature. In light of recent experimental BDE’s, the longstanding correlation consistent composite approach (ccCA) is also evaluated for the VX species and find that the mean absolute deviation (MAD) is greatly reduced compared to previously used experimental values. 
    more » « less