Abstract We examine the behavior of natural basaltic and trachytic samples during paleointensity experiments on both the original and laboratory‐acquired thermal remanences and characterize the samples using proxies for domain state including curvature (k) and the bulk domain stability parameters of Paterson (2011,https://doi.org/10.1029/2011JB008369) and Paterson et al. (2017,https://doi.org/10.1073/pnas.1714047114), respectively. A curvature value of 0.164 (suggested by Paterson, 2011,https://doi.org/10.1029/2011JB008369) as a critical threshold that separates single‐domain‐like remanences from multidomain‐like remanances on the original paleointensity data was used to separate samples into “straight” (single‐domain‐like) and “curved” (multidomain‐like) groups. Specimens from the two sample sets were given a “fresh” thermal remanent magnetization in a 70 μT field and subjected to an infield‐zerofield, zerofield‐infield (IZZI)‐type (Yu et al., 2004,https://doi.org/10.1029/2003GC000630) paleointensity experiment. The straight sample set recovered the laboratory field with high precision while the curved set had much more scattered results (70.5 ± 1.5 and 71.9 ± 5.2 μT, respectively). The average intensity of both sets for straight and curved was quite close to the laboratory field of 70 μT, however, suggesting that if experiments contain a sufficient number of specimens, there does not seem to be a large bias in the field estimate. We found that the dependence of the laboratory thermal remanent magnetization on cooling rate was significant in most samples and did not depend on domain states inferred from proxies based on hysteresis measurements and should be estimated for all samples whose cooling rates differ from that used in the laboratory.
more »
« less
Domain State and Temperature Dependence of Pressure Remanent Magnetization in Synthetic Magnetite: Implications for Crustal Remagnetization
Abstract Pressure remanent magnetization (PRM) is acquired when a rock is compressed in the presence of a magnetic field. This process can take place in many different environments from impact and ejection processes in space, to burial and subsequent uplifting of terrestrial rocks. In this study, we systematically study the acquisition of PRM at different pressures and temperatures, using synthetic magnetite in four different grain sizes ranging from nearly single‐domain to purely multidomain. The magnitude of the PRM acquired in a 300 μTfield is, within error, independent of the domain state of the sample. We propose that the acquisition of a PRM is mainly driven by the magnetostriction of the magnetic material. We further show that compared to a thermal remanent magnetization, the acquisition of PRM in large multidomain grains can be quite efficient, and may represent a significant component of magnetization in low‐temperature–high‐pressure environments.
more »
« less
- PAR ID:
- 10453719
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geochemistry, Geophysics, Geosystems
- Volume:
- 20
- Issue:
- 5
- ISSN:
- 1525-2027
- Page Range / eLocation ID:
- p. 2473-2483
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Two basalts with compositions relevant to the crusts of Mars and Earth were synthesized at igneous temperatures and held at 650°C for 21 to 257 days under quartz‐fayalite‐magnetitefO2buffer conditions. The run products are germane to slowly cooled igneous intrusions, which might be a significant volumetric fraction of the Martian crust and carriers of magnetic anomalies in the Southern Highlands. Both basalts acquired intense thermoremanent magnetizations and intense but easily demagnetized anhysteretic remanent magnetizations carried by homogeneous multidomain titanomagnetite. Hypothetical intrusions on Mars composed of these materials would be capable of acquiring intense remanences sufficient to generate the observed anomalies. However, the remanence would be easily demagnetized by impact events after the cessation of the Mars geodynamo. Coercivity enhancement by pressure or formation of single domain regions via exsolution within the multidomain grains is necessary for long‐term retention of a remanence carried exclusively by multidomain titanomagnetite grains.more » « less
-
Abstract The late Ediacaran to early Cambrian witnessed significant Earth system changes, including animal life diversification and an enigmatic paleomagnetic record. This study focuses on the Nama Group, a key geological unit for understanding the Ediacaran‐Cambrian transition. Previous paleomagnetic studies in the Nama Group identified complex remagnetization patterns but lacked a detailed examination of remanence carriers. To address this, we conducted a series of rock magnetic experiments on unweathered borehole core samples to better constrain the remagnetization mechanisms. Thermal demagnetization identified two magnetic components.C1, a recent viscous remanent magnetization, used for borehole core orientation, andC2, a stable remagnetization component carried by single‐domain (SD) pyrrhotite and magnetite. Magnetic mineralogy and paleomagnetic data suggest that the remanence acquisition mechanism ofC2is best explained by thermoviscous remanent magnetization (TVRM) and thermal remanent magnetization (TRM), rather than chemical remanent magnetization (CRM). The presence of low unblocking temperatures, coupled with thermochronological evidence of prolonged heating during tectonic collisions and subsequent cooling, supports this interpretation. The remagnetization event is linked to the final consolidation of West Gondwanaland during the late stages of megacontinent assembly (∼490–480 Ma), coinciding with regional uplift and a stable geomagnetic field during the Moyero reverse superchron. These findings challenge the CRM hypothesis, as the quasi‐synchronous remagnetization across cratonic blocks and the predominance of single reverse polarity are better explained by thermal processes. This study highlights the critical role of thermoviscous relaxation in large‐scale remagnetization and provides new insights into the tectonic evolution of West Gondwanaland.more » « less
-
Abstract The magnetization of hematite‐bearing sedimentary rocks provides critical records of geomagnetic reversals and paleogeography. However, the timing of hematite remanent magnetization acquisition is typically difficult to constrain. While detrital hematite in sediment can lead to a primary depositional remanent magnetization, alteration of minerals through interaction with oxygen can lead to the postdepositional formation of hematite. In this study, we use exceptionally preserved fluvial sediments within the 1.1‐billion‐year‐old Freda Formation to gain insight into the timing of hematite remanence acquisition and its magnetic properties. This deposit contains siltstone intraclasts that were eroded from a coexisting lithofacies and redeposited within channel sandstone. Thermal demagnetization, petrography, and rock magnetic experiments on these clasts reveal two generations of hematite. One population of hematite demagnetized at the highest unblocking temperatures and records directions that rotated along with the clasts. This component is a primary detrital remanent magnetization. The other component is removed at lower unblocking temperatures and has a consistent direction throughout the intraclasts. This component is held by finer‐grained hematite that grew and acquired a chemical remanent magnetization following deposition resulting in a population that includes superparamagnetic nanoparticles in addition to remanence‐carrying grains. The data support the interpretation that magnetizations of hematite‐bearing sedimentary rocks held by >400‐nm grains that unblock close to the Néel temperature are more likely to record magnetization from the time of deposition. This primary magnetization can be successfully isolated from cooccurring authigenic hematite through high‐resolution thermal demagnetization.more » « less
-
Abstract Natural materials contain small grains of magnetic iron oxides that can record information about the magnetic field of the Earth when they form and can be used to document changes in the geomagnetic field through time. Thermoremanent magnetization is the most stable type of remanent magnetization in igneous rocks and can be carried by particle sizes above the upper size limit for single‐domain behavior. To better understand thermoremanent magnetization in particles larger than single domain, we imaged the thermal dependence of magnetic structures in ~1.5‐μm grains of titanomagnetite (Fe2.46Ti0.54O4) using variable‐temperature magnetic force microscopy. At room temperature, grains displayed single‐vortex and multivortex states. Upon heating, the single‐vortex state was found to be stable up to the Curie temperature (~215 °C), whereas multivortex states unblocked between 125 and 200 °C by transitioning into single‐vortex states. During cooling in a weak field (~0.1 mT), single‐vortex states nucleated just below the Curie temperature and remained unchanged to room temperature. The single‐vortex state was the only magnetic state observed at room temperature after weak field thermoremanent magnetization acquisition experiments. These observations indicate that single‐vortex states occur in titanomagnetite and, like single‐domain particles, have high thermal stability necessary for carrying stable paleomagnetic remanence.more » « less
An official website of the United States government
