skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Distinct Wolbachia localization patterns in oocytes of diverse host species reveal multiple strategies of maternal transmission
Abstract A broad array of endosymbionts radiate through host populations via vertical transmission, yet much remains unknown concerning the cellular basis, diversity, and routes underlying this transmission strategy. Here, we address these issues, by examining the cellular distributions of Wolbachia strains that diverged up to 50 million years ago in the oocytes of 18 divergent Drosophila species. This analysis revealed 3 Wolbachia distribution patterns: (1) a tight clustering at the posterior pole plasm (the site of germline formation); (2) a concentration at the posterior pole plasm, but with a significant bacteria population distributed throughout the oocyte; and (3) a distribution throughout the oocyte, with none or very few located at the posterior pole plasm. Examination of this latter class indicates Wolbachia accesses the posterior pole plasm during the interval between late oogenesis and the blastoderm formation. We also find that 1 Wolbachia strain in this class concentrates in the posterior somatic follicle cells that encompass the pole plasm of the developing oocyte. In contrast, strains in which Wolbachia concentrate at the posterior pole plasm generally exhibit no or few Wolbachia in the follicle cells associated with the pole plasm. Taken together, these studies suggest that for some Drosophila species, Wolbachia invade the germline from neighboring somatic follicle cells. Phylogenomic analysis indicates that closely related Wolbachia strains tend to exhibit similar patterns of posterior localization, suggesting that specific localization strategies are a function of Wolbachia-associated factors. Previous studies revealed that endosymbionts rely on 1 of 2 distinct routes of vertical transmission: continuous maintenance in the germline (germline-to-germline) or a more circuitous route via the soma (germline-to-soma-to-germline). Here, we provide compelling evidence that Wolbachia strains infecting Drosophila species maintain the diverse arrays of cellular mechanisms necessary for both of these distinct transmission routes. This characteristic may account for its ability to infect and spread globally through a vast range of host insect species.  more » « less
Award ID(s):
2145195
PAR ID:
10453766
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
GENETICS
Volume:
224
Issue:
1
ISSN:
1943-2631
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ovulation is critical for sexual reproduction and consists of the process of liberating fertilizable oocytes from their somatic follicle capsules, also known as follicle rupture. The mechanical force for oocyte expulsion is largely unknown in many species. Our previous work demonstrated that Drosophila ovulation, as in mammals, requires the proteolytic degradation of the posterior follicle wall and follicle rupture to release the mature oocyte from a layer of somatic follicle cells. Here, we identified actomyosin contraction in somatic follicle cells as the major mechanical force for follicle rupture. Filamentous actin (F-actin) and nonmuscle myosin II (NMII) are highly enriched in the cortex of follicle cells upon stimulation with octopamine (OA), a monoamine critical for Drosophila ovulation. Pharmacological disruption of F-actin polymerization prevented follicle rupture without interfering with the follicle wall breakdown. In addition, we demonstrated that OA induces Rho1 guanosine triphosphate (GTP)ase activation in the follicle cell cortex, which activates Ras homolog (Rho) kinase to promote actomyosin contraction and follicle rupture. All these results led us to conclude that OA signaling induces actomyosin cortex enrichment and contractility, which generates the mechanical force for follicle rupture during Drosophila ovulation. Due to the conserved nature of actomyosin contraction, this work could shed light on the mechanical force required for follicle rupture in other species including humans. 
    more » « less
  2. ABSTRACT Many bacteria live as intracellular symbionts, causing persistent infections within insects. One extraordinarily common infection is that of Wolbachia pipientis , which infects 40% of insect species and induces reproductive effects. The bacteria are passed from generation to generation both vertically (through the oocyte) and horizontally (by environmental transmission). Maintenance of the infection within Drosophila melanogaster is sensitive to the regulation of actin, as Wolbachia inefficiently colonizes strains hemizygous for the profilin or villin genes. Therefore, we hypothesized that Wolbachia must depend on the host actin cytoskeleton. In this study, we identify and characterize a Wolbachia protein (WD0830) that is predicted to be secreted by the bacterial parasite. Expression of WD0830 in a model eukaryote (the yeast Saccharomyces cerevisiae ) induces a growth defect associated with the appearance of aberrant, filamentous structures which colocalize with rhodamine-phalloidin-stained actin. Purified WD0830 bundles actin in vitro and cosediments with actin filaments, suggesting a direct interaction of the two proteins. We characterized the expression of WD0830 throughout Drosophila development and found it to be upregulated in third-instar larvae, peaking in early pupation, during the critical formation of adult tissues, including the reproductive system. In transgenic flies, heterologously expressed WD0830 localizes to the developing oocyte. Additionally, overexpression of WD0830 results in increased Wolbachia titers in whole flies, in stage 9 and 10 oocytes, and in embryos, compared to controls, suggesting that the protein may facilitate Wolbachia ’s replication or transmission. Therefore, this candidate secreted effector may play a role in Wolbachia ’s infection of and persistence within host niches. IMPORTANCE The obligate intracellular Wolbachia pipientis is a ubiquitous alphaproteobacterial symbiont of arthropods and nematodes and is related to the rickettsial pathogens Ehrlichia spp. and Anaplasma spp. Studies of Wolbachia cell biology suggest that this bacterium relies on host actin for efficient proliferation and transmission between generations. Here, we identified and characterized a Wolbachia protein that localizes to and manipulates the eukaryotic actin cytoskeleton, is expressed by Wolbachia during host development, and alters Wolbachia titers and localization in transgenic fruit flies. We hypothesize that WD0830 may be utilized by the bacterium to facilitate replication in or invasion of different niches during host development. 
    more » « less
  3. ABSTRACT Many insects and other animals host heritable endosymbionts that alter host fitness and reproduction. The prevalence of facultative endosymbionts can fluctuate in host populations across time and geography for reasons that are poorly understood. This is particularly true for maternally transmittedWolbachiabacteria, which infect roughly half of all insect species. For instance, the frequencies of severalwMel‐likeWolbachia, includingwMel in hostDrosophila melanogaster, fluctuate over time in certain host populations, but the specific conditions that generate temporal variation inWolbachiaprevalence are unresolved. We implemented a discrete generation model in the new R packagesymbiontmodelerto evaluate how finite‐population stochasticity contributes toWolbachiafluctuations over time in simulated host populations under a variety of conditions. Using empirical estimates from naturalWolbachia‐Drosophilasystems, we explored how stochasticity is determined by a broad range of factors, including host population size, maternal transmission rates, andWolbachiaeffects on host fitness (modeled as fecundity) and reproduction (cytoplasmic incompatibility; CI). While stochasticity generally increases when host fitness benefits and CI are relaxed, we found that a decline in the maternal transmission rate had the strongest relative impact on increasing the size of fluctuations. We infer that non‐ or weak‐CI‐causing strains likewMel, which often show evidence of imperfect maternal transmission, tend to generate larger stochastic fluctuations compared to strains that cause strong CI, likewRi inD. simulans. Additional factors, such as fluctuating host fitness effects, are required to explain the largest examples of temporal variation inWolbachia. The conditions we simulate here usingsymbiontmodelerserve as a jumping‐off point for understanding drivers of temporal and spatial variation in the prevalence ofWolbachia, the most common endosymbionts found in nature. 
    more » « less
  4. Malik, Harmit S. (Ed.)
    Bacteria that live inside the cells of insect hosts (endosymbionts) can alter the reproduction of their hosts, including the killing of male offspring (male killing, MK). MK has only been described in a few insects, but this may reflect challenges in detecting MK rather than its rarity. Here, we identify MK Wolbachia at a low frequency (around 4%) in natural populations of Drosophila pseudotakahashii . MK Wolbachia had a stable density and maternal transmission during laboratory culture, but the MK phenotype which manifested mainly at the larval stage was lost rapidly. MK Wolbachia occurred alongside a second Wolbachia strain expressing a different reproductive manipulation, cytoplasmic incompatibility (CI). A genomic analysis highlighted Wolbachia regions diverged between the 2 strains involving 17 genes, and homologs of the wmk and cif genes implicated in MK and CI were identified in the Wolbachia assembly. Doubly infected males induced CI with uninfected females but not females singly infected with CI-causing Wolbachia . A rapidly spreading dominant nuclear suppressor genetic element affecting MK was identified through backcrossing and subsequent analysis with ddRAD SNPs of the D . pseudotakahashii genome. These findings highlight the complexity of nuclear and microbial components affecting MK endosymbiont detection and dynamics in populations and the challenges of making connections between endosymbionts and the host phenotypes affected by them. 
    more » « less
  5. Rogers, Rebekah (Ed.)
    Abstract Wolbachia are a genus of widespread bacterial endosymbionts in which some strains can hijack or manipulate arthropod host reproduction. Male killing is one such manipulation in which these maternally transmitted bacteria benefit surviving daughters in part by removing competition with the sons for scarce resources. Despite previous findings of interesting genome features of microbial sex ratio distorters, the population genomics of male-killers remain largely uncharacterized. Here, we uncover several unique features of the genome and population genomics of four Arizonan populations of a male-killing Wolbachia strain, wInn, that infects mushroom-feeding Drosophila innubila. We first compared the wInn genome with other closely related Wolbachia genomes of Drosophila hosts in terms of genome content and confirm that the wInn genome is largely similar in overall gene content to the wMel strain infecting D. melanogaster. However, it also contains many unique genes and repetitive genetic elements that indicate lateral gene transfers between wInn and non-Drosophila eukaryotes. We also find that, in line with literature precedent, genes in the Wolbachia prophage and Octomom regions are under positive selection. Of all the genes under positive selection, many also show evidence of recent horizontal transfer among Wolbachia symbiont genomes. These dynamics of selection and horizontal gene transfer across the genomes of several Wolbachia strains and diverse host species may be important underlying factors in Wolbachia’s success as a male-killer of divergent host species. 
    more » « less