Oxygen bioavailability is declining in aquatic systems worldwide as a result of climate change and other anthropogenic stressors. For aquatic organisms, the consequences are poorly known but are likely to reflect both direct effects of declining oxygen bioavailability and interactions between oxygen and other stressors, including two—warming and acidification— that have received substantial attention in recent decades and that typically accompany oxygen changes. Drawing on the collected papers in this symposium volume (“An Oxygen Perspective on Climate Change”), we outline the causes and consequences of declining oxygen bioavailability. First, we discuss the scope of natural and predicted anthropogenic changes in aquatic oxygen levels. Although modern organisms are the result of long evolutionary histories during which they were exposed to natural oxygen regimes, anthropogenic change is now exposing them to more extreme conditions and novel combinations of low oxygen with other stressors. Second, we identify behavioral and physiological mechanisms that underlie the interactive effects of oxygen with other stressors, and we assess the range of potential organismal responses to oxygen limitation that occur across levels of biological organization and over multiple timescales. We argue that metabolism and energetics provide a powerful and unifying framework for understanding organism-oxygen interactions. Third,we conclude by outlining a set of approaches for maximizing the effectiveness of future work, including focusing on long-term experiments using biologically realistic variation in experimental factors and taking truly cross disciplinary and integrative approaches to understanding and predicting future effects.
more »
« less
Insects in high‐elevation streams: Life in extreme environments imperiled by climate change
Abstract Climate change is altering conditions in high‐elevation streams worldwide, with largely unknown effects on resident communities of aquatic insects. Here, we review the challenges of climate change for high‐elevation aquatic insects and how they may respond, focusing on current gaps in knowledge. Understanding current effects and predicting future impacts will depend on progress in three areas. First, we need better descriptions of the multivariate physical challenges and interactions among challenges in high‐elevation streams, which include low but rising temperatures, low oxygen supply and increasing oxygen demand, high and rising exposure to ultraviolet radiation, low ionic strength, and variable but shifting flow regimes. These factors are often studied in isolation even though they covary in nature and interact in space and time. Second, we need a better mechanistic understanding of how physical conditions in streams drive the performance of individual insects. Environment‐performance links are mediated by physiology and behavior, which are poorly known in high‐elevation taxa. Third, we need to define the scope and importance of potential responses across levels of biological organization. Short‐term responses are defined by the tolerances of individuals, their capacities to perform adequately across a range of conditions, and behaviors used to exploit local, fine‐scale variation in abiotic factors. Longer term responses to climate change, however, may include individual plasticity and evolution of populations. Whether high‐elevation aquatic insects can mitigate climatic risks via these pathways is largely unknown.
more »
« less
- PAR ID:
- 10453968
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Global Change Biology
- Volume:
- 26
- Issue:
- 12
- ISSN:
- 1354-1013
- Page Range / eLocation ID:
- p. 6667-6684
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract A fundamental goal of ecology is to understand how the physical environment influences intraspecific variability in life history and, consequently, fitness. In streams, discharge and associated habitat conditions change along a continuum from intermittency to permanence: Headwater streams typically have smaller watersheds and are thus more prone to drying than higher‐order streams with larger watersheds and more consistent discharge. However, few empirical studies have assessed life history and associated population responses to this continuum in aquatic organisms. We tested the prediction that individual growth, rate of development, and population growth increase with watershed area in the long‐lived stream salamanderGyrinophilus porphyriticus, where we use watershed area as a proxy for hydrologic intermittence. To address this hypothesis, we used 8 years of mark–recapture data from 53 reaches across 10 headwater streams in New Hampshire, USA. Individual growth rates and mean size at metamorphosis increased with watershed area for watersheds from 0.12 to 1.66 km2. Population growth rates increased with watershed area; however, this result was not statistically significant at our sample size. Mean age of metamorphosis did not vary across watershed areas. Lower individual growth rates and smaller sizes at metamorphosis likely contributed to reduced lifetime fecundity and population growth in reaches with the smallest watershed areas and highest vulnerability to drought. These responses suggest that as droughts increase due to climate change, headwater specialists in hydrologically intermittent environments will experience a reduction in fitness due to smaller body sizes or other growth‐related mechanisms.more » « less
-
null (Ed.)Abstract Coastal ecosystems experience substantial natural fluctuations in p CO 2 and dissolved oxygen (DO) conditions on diel, tidal, seasonal and interannual timescales. Rising carbon dioxide emissions and anthropogenic nutrient input are expected to increase these p CO 2 and DO cycles in severity and duration of acidification and hypoxia. How coastal marine organisms respond to natural p CO 2 × DO variability and future climate change remains largely unknown. Here, we assess the impact of static and cycling p CO 2 × DO conditions of various magnitudes and frequencies on early life survival and growth of an important coastal forage fish, Menidia menidia . Static low DO conditions severely decreased embryo survival, larval survival, time to 50% hatch, size at hatch and post-larval growth rates. Static elevated p CO 2 did not affect most response traits, however, a synergistic negative effect did occur on embryo survival under hypoxic conditions (3.0 mg L −1 ). Cycling p CO 2 × DO, however, reduced these negative effects of static conditions on all response traits with the magnitude of fluctuations influencing the extent of this reduction. This indicates that fluctuations in p CO 2 and DO may benefit coastal organisms by providing periodic physiological refuge from stressful conditions, which could promote species adaptability to climate change.more » « less
-
Abstract How much stream temperatures increase within riparian canopy openings and whether stream temperatures cool downstream of these openings both have important policy implications. Past studies of stream cooling downstream of riparian openings have found mixed results including rapid, slow, and no cooling. We collected longitudinal profiles of stream temperatures above, within, and below riparian forest openings along stream segments within otherwise forested riparian conditions to evaluate how sensitivity of stream temperatures to riparian conditions varied across landscape factors. We conducted these temperature surveys across openings in 12 wadeable streams within and near the Upper Little Tennessee River Basin in western North Carolina and northeastern Georgia. Basin areas ranged from 74 to 6,913 ha, and bankfull channel widths varied from 3.4 to 16.4 m. Stream temperatures were collected every 15 min using HOBO® data loggers for 2 weeks in each stream, repeated later in summer in some streams. Reference temperatures were highest in stream reaches at low elevations and with large drainage areas. Stream temperature increases in the middle of riparian gaps were highest when streams drained small high‐elevation watersheds, and increases at the end of openings were highest when the opening length was large relative to watershed size. Downstream from openings, cooling rates were greatest in small, high‐elevation headwater streams and also increased with larger increases in canopy cover. Stream segments that warmed the most within openings also featured higher cooling rates downstream. The data show that stream temperature sensitivity to canopy change is highly dependent on network position and watershed size. A better understanding of stream temperature responses to riparian vegetation may be useful to land managers and landowners prioritizing riparian forest restoration.more » « less
-
Cropland Microclimate and Leaf-nesting Behavior Shape the Growth of Caterpillar under Future WarmingSynopsis Predicting performance responses of insects to climate change is crucial for biodiversity conservation and pest management. While most projections on insects’ performance under climate change have used macro-scale weather station data, few incorporated the microclimates within vegetation that insects inhabit and their feeding behaviors (e.g., leaf-nesting: building leaf nests or feeding inside). Here, taking advantage of relatively homogenous vegetation structures in agricultural fields, we built microclimate models to examine fine-scale air temperatures within two important crop systems (maize and rice) and compared microclimate air temperatures to temperatures from weather stations. We deployed physical models of caterpillars and quantified effects of leaf-nesting behavior on operative temperatures of two Lepidoptera pests: Ostrinia furnacalis (Pyralidae) and Cnaphalocrocis medinalis (Crambidae). We built temperature-growth rate curves and predicted the growth rate of caterpillars with and without leaf-nesting behavior based on downscaled microclimate changes under different climate change scenarios. We identified widespread differences between microclimates in our crop systems and air temperatures reported by local weather stations. Leaf-nesting individuals in general had much lower body temperatures compared to non-leaf-nesting individuals. When considering microclimates, we predicted leaf-nesting individuals grow slower compared to non-leaf-nesting individuals with rising temperature. Our findings highlight the importance of considering microclimate and habitat-modifying behavior in predicting performance responses to climate change. Understanding the thermal biology of pests and other insects would allow us to make more accurate projections on crop yields and biodiversity responses to environmental changes.more » « less
An official website of the United States government
