skip to main content

Title: Diet overlap among non‐native trout species and native cutthroat Trout ( Oncorhynchus clarkii) in two U.S. ecoregions

The invasion of freshwater ecosystems by non‐native species can constitute a significant threat to native species and ecosystem health. Non‐native trouts have long been stocked in areas where native trouts occur and have negatively impacted native trouts through predation, competition, and hybridization. This study encompassed two seasons of sampling efforts across two ecoregions of the western United States: The Great Basin in summer 2016 and the Yellowstone River Basin in summer 2017. We found significant dietary overlaps among native and non‐native trouts within the Great Basin and Yellowstone River Basin ecoregions. Three orders of invertebrates (Ephemeroptera, Trichoptera, and Diptera) composed the majority of stomach contents and were responsible for driving the observed patterns. Great Basin trout had higher body conditions (k), and non‐native Great Basin trout had higher gut fullness values than Yellowstone River Basin trout, indicating a possible limitation of food in the Yellowstone River Basin. Native fishes were the least abundant and had the lowest body condition in each ecoregion. These findings may indicate a negative impact on native trouts by non‐native trouts. We recommend additional monitoring of native and non‐native trout diets, regular invertebrate surveys to identify the availability of diet items, and reconsidering stocking efforts that can result in overlap of non‐native fishes with native cutthroat trout.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology and Evolution
Page Range / eLocation ID:
p. 2782-2795
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Hybridization can profoundly affect the genomic composition and phenotypes of closely related species, and provides an opportunity to identify mechanisms that maintain reproductive isolation between species. Recent evidence suggests that hybridization outcomes within a species pair can vary across locations. However, we still do not know how variable outcomes of hybridization are across geographic replicates, and what mechanisms drive that variation. In this study, we described hybridization outcomes across 27 locations in the North Fork Shoshone River basin (Wyoming, USA) where native Yellowstone cutthroat trout and introduced rainbow trout co‐occur. We used genomic data and hierarchical Bayesian models to precisely identify ancestry of hybrid individuals. Hybridization outcomes varied across locations. In some locations, only rainbow trout and advanced backcrossed hybrids towards rainbow trout were present, while trout in other locations had a broader range of ancestry, including both parental species and first‐generation hybrids. Later‐generation intermediate hybrids were rare relative to backcrossed hybrids and rainbow trout individuals. Using an individual‐based simulation, we found that outcomes of hybridization in the North Fork Shoshone River basin deviate substantially from what we would expect under null expectations of random mating and no selection against hybrids. Since this deviation implies that some mechanisms of reproductive isolation function to maintain parental taxa and a diversity of hybrid types, we then modelled hybridization outcomes as a function of environmental variables and stocking history that are likely to affect prezygotic barriers to hybridization. Variables associated with history of fish stocking were the strongest predictors of hybridization outcomes, followed by environmental variables that might affect overlap in spawning time and location.

    more » « less
  2. Abstract

    Despite growing interest in conservation and re‐establishment of ecological connectivity, few studies have explored its context‐specific social–ecological outcomes. We aimed to explore social and ecological outcomes to changing stream connectivity for both stakeholders and native fish species impacted by habitat fragmentation and nonnative species. We (1) investigated stakeholder perceptions of the drivers and outcomes of stream connectivity, and (2) evaluated the effects of stakeholder‐identified connectivity and nonnative species scenarios on Yellowstone cutthroat trout (YCT) populations. Our study was conducted in the Teton River, Idaho, USA. We integrated two modeling approaches, mental modeling and individual‐based ecological modeling, to explore social–ecological outcomes for stakeholders and YCT populations. Aggregation of mental models revealed an emergent pattern of increasing complexity as more types of stakeholders were considered, as well as gaps and linkages among different stakeholder knowledge areas. These results highlight the importance of knowledge sharing among stakeholders when making decisions about connectivity. Additionally, the results from the individual‐based models suggested that the potential for a large, migratory life history form of YCT, in addition to self‐preference mating where they overlap with rainbow trout, had the strongest effects on outcomes for YCT. Exploring social and ecological drivers and outcomes to changing connectivity is useful for anticipating and adapting to unintended outcomes, as well as making decisions for desirable outcomes. The results from this study can contribute to the management dialogue surrounding stream connectivity in the Teton River, as well as to our understanding of connectivity conservation and its outcomes more broadly.

    more » « less
  3. We used direct observation via snorkeling surveys to quantify microhabitat use by native brook (Salvelinus fontinalis) and non‐native brown (Salmo trutta) and rainbow (Onchorynchus mykiss) trout occupying natural and restored pool habitats within a large, high‐elevation Appalachian river, United States. Permutational multivariate analysis of variance (PERMANOVA) and subsequent two‐way analysis of variance (ANOVA) indicated a significant difference in microhabitat use by brook and non‐native trout within restored pools. We also detected a significant difference in microhabitat use by brook trout occupying pools in allopatry versus those occupying pools in sympatry with non‐native trout—a pattern that appears to be modulated by size. Smaller brook trout often occupied pools in the absence of non‐native species, where they used shallower and faster focal habitats. Larger brook trout occupied pools with, and utilized similar focal habitats (i.e. deeper, slower velocity) as, non‐native trout. Non‐native trout consistently occupied more thermally suitable microhabitats closer to cover as compared to brook trout, including the use of thermal refugia (i.e. ambient–focal temperature >2°C). These results suggest that non‐native trout influence brook trout use of restored habitats by: (1) displacing smaller brook trout from restored pools, and (2) displacing small and large brook trout from optimal microhabitats (cooler, deeper, and lower velocity). Consequently, benefits of habitat restoration in large rivers may only be fully realized by brook trout in the absence of non‐native species. Future research within this and other large river systems should characterize brook trout response to stream restoration following removal of non‐native species.

    more » « less
  4. Success of stream restoration can be difficult to define because many interacting abiotic and biotic factors across spatio‐temporal scales can have measurable effects. Consequently, failure in habitat restoration to achieve targeted biological goals may reflect interactions of habitat restoration with unaccounted risks that have yet to be addressed on the landscape. This is particularly true within invaded landscapes, where habitat restoration can benefit non‐native competitors as much as the native fishes for which restoration is designed. We tested for interacting effects of a reach scale habitat restoration effort and non‐native trout competition on habitat use by a brook trout (Salvelinus fontinalis) metapopulation within a productive main stem corridor of the Shavers Fork watershed, West Virginia. We used a joint species occupancy model within a BACI sampling design to show that brook trout occupancy of main stem habitat was highest post‐restoration within restored sampling reaches, but this benefit to native brook trout was conditional on brown trout (Salmo trutta) not being present within the main stem habitat. Collectively these results indicate that habitat restoration was only beneficial for native brook trout when non‐native trout were absent from the restored sampling area. Proactive approaches to restoration will be integral for supporting resilient ecosystems in response to future anthropogenic threats (e.g. climate change), and we have shown that such actions will only be successful if non‐native competitors do not also benefit from the restoration actions.

    more » « less
  5. Abstract

    Hybridization between invasive and native species, a significant threat to worldwide biodiversity, is predicted to increase due to climate‐induced expansions of invasive species. Long‐term research and monitoring are crucial for understanding the ecological and evolutionary processes that modulate the effects of invasive species. Using a large, multidecade genetics dataset (= 582 sites, 12,878 individuals) with high‐resolution climate predictions and extensive stocking records, we evaluate the spatiotemporal dynamics of hybridization between native cutthroat trout and invasive rainbow trout, the world's most widely introduced invasive fish, across the Northern Rocky Mountains of the United States. Historical effects of stocking and contemporary patterns of climatic variation were strongly related to the spread of hybridization across space and time. The probability of occurrence, extent of, and temporal changes in hybridization increased at sites in close proximity to historical stocking locations with greater rainbow trout propagule pressure, warmer water temperatures, and lower spring precipitation. Although locations with warmer water temperatures were more prone to hybridization, cold sites were not protected from invasion; 58% of hybridized sites had cold mean summer water temperatures (<11°C). Despite cessation of stocking over 40 years ago, hybridization increased over time at half (50%) of the locations with long‐term data, the vast majority of which (74%) were initially nonhybridized, emphasizing the chronic, negative impacts of human‐mediated hybridization. These results show that effects of climate change on biodiversity must be analyzed in the context of historical human impacts that set ecological and evolutionary trajectories.

    more » « less