skip to main content


Title: Identifying Active Galactic Nuclei at z ∼ 3 from the HETDEX Survey Using Machine Learning
Abstract We used data from the Hobby–Eberly Telescope Dark Energy Experiment (HETDEX) to study the incidence of AGN in continuum-selected galaxies at z ∼ 3. From optical and infrared imaging in the 24 deg 2 Spitzer HETDEX Exploratory Large Area survey, we constructed a sample of photometric-redshift selected z ∼ 3 galaxies. We extracted HETDEX spectra at the position of 716 of these sources and used machine-learning methods to identify those which exhibited AGN-like features. The dimensionality of the spectra was reduced using an autoencoder, and the latent space was visualized through t-distributed stochastic neighbor embedding. Gaussian mixture models were employed to cluster the encoded data and a labeled data set was used to label each cluster as either AGN, stars, high-redshift galaxies, or low-redshift galaxies. Our photometric redshift (photo z ) sample was labeled with an estimated 92% overall accuracy, an AGN accuracy of 83%, and an AGN contamination of 5%. The number of identified AGN was used to measure an AGN fraction for different magnitude bins. The ultraviolet (UV) absolute magnitude where the AGN fraction reaches 50% is M UV = −23.8. When combined with results in the literature, our measurements of AGN fraction imply that the bright end of the galaxy luminosity function exhibits a power law rather than exponential decline, with a relatively shallow faint-end slope for the z ∼ 3 AGN luminosity function.  more » « less
Award ID(s):
1908817
NSF-PAR ID:
10454127
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Astronomical Journal
Volume:
165
Issue:
4
ISSN:
0004-6256
Page Range / eLocation ID:
153
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present Ly α and ultraviolet (UV)-continuum luminosity functions (LFs) of galaxies and active galactic nuclei (AGNs) at z = 2.0–3.5 determined by the untargeted optical spectroscopic survey of the Hobby–Eberly Telescope Dark Energy Experiment (HETDEX). We combine deep Subaru imaging with HETDEX spectra resulting in 11.4 deg 2 of fiber spectra sky coverage, obtaining 18,320 galaxies spectroscopically identified with Ly α emission, 2126 of which host type 1 AGNs showing broad (FWHM > 1000 km s −1 ) Ly α emission lines. We derive the Ly α (UV) LF over 2 orders of magnitude covering bright galaxies and AGNs in log L Ly α / [ erg s − 1 ] = 43.3 – 45.5 (−27 < M UV < −20) by the 1/ V max estimator. Our results reveal that the bright-end hump of the Ly α LF is composed of type 1 AGNs. In conjunction with previous spectroscopic results at the faint end, we measure a slope of the best-fit Schechter function to be α Sch = − 1.70 − 0.14 + 0.13 , which indicates that α Sch steepens from z = 2–3 toward high redshift. Our UV LF agrees well with previous AGN UV LFs and extends to faint-AGN and bright-galaxy regimes. The number fraction of Ly α -emitting objects ( X LAE ) increases from M UV * ∼ − 21 to bright magnitude due to the contribution of type 1 AGNs, while previous studies claim that X Ly α decreases from faint magnitudes to M UV * , suggesting a valley in the X Ly α –magnitude relation at M UV * . Comparing our UV LF of type 1 AGNs at z = 2–3 with those at z = 0, we find that the number density of faint ( M UV > −21) type 1 AGNs increases from z ∼ 2 to 0, as opposed to the evolution of bright ( M UV < −21) type 1 AGNs, suggesting AGN downsizing in the rest-frame UV luminosity. 
    more » « less
  2. Abstract

    We present the Lyαemission line luminosity function (LF) of the active galactic nuclei (AGN) in the first release of the Hobby–Eberly Telescope Dark Energy Experiment Survey (HETDEX) AGN catalog. The AGN are selected either by emission line pairs characteristic of AGN or by a single broad emission line, free of any photometric preselections (magnitude/color/morphology). The sample consists of 2346 AGN spanning 1.88 <z< 3.53, covering an effective area of 30.61 deg2. Approximately 2.6% of the HETDEX AGN are not detected at >5σconfidence atr∼ 26 in the deepestr-band images we have searched. The Lyαline luminosity ranges from ∼1042.3to 1045.9erg s−1. Our LyαLF shows a turnover luminosity with opposite slopes on the bright end and the faint end: The space density is highest atLLyα=1043.4erg s−1. We explore the evolution of the AGN LF over a broader redshift range (0.8 <z< 3); constructing the rest-frame ultraviolet (UV) LF with the 1450 Å monochromatic luminosity of the power-law component of the continuum (M1450) fromM1450∼ −18 to −27.5. We divide the sample into three redshift bins (z∼ 1.5, 2.1, and 2.6). In all three redshift bins, our UV LFs indicate that the space density of AGN is highest at the turnover luminosityM1450*with opposite slopes on the bright end and the faint end. TheM1450LFs in the three redshift bins can be well fit with a luminosity evolution and density evolution model: the turnover luminosity (M1450*) increases, and the turnover density (Φ*) decreases with increasing redshift.

     
    more » « less
  3. Abstract We present the first publicly released catalog of sources obtained from the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX). HETDEX is an integral field spectroscopic survey designed to measure the Hubble expansion parameter and angular diameter distance at 1.88 < z < 3.52 by using the spatial distribution of more than a million Ly α -emitting galaxies over a total target area of 540 deg 2 . The catalog comes from contiguous fiber spectra coverage of 25 deg 2 of sky from 2017 January through 2020 June, where object detection is performed through two complementary detection methods: one designed to search for line emission and the other a search for continuum emission. The HETDEX public release catalog is dominated by emission-line galaxies and includes 51,863 Ly α -emitting galaxy (LAE) identifications and 123,891 [O ii ]-emitting galaxies at z < 0.5. Also included in the catalog are 37,916 stars, 5274 low-redshift ( z < 0.5) galaxies without emission lines, and 4976 active galactic nuclei. The catalog provides sky coordinates, redshifts, line identifications, classification information, line fluxes, [O ii ] and Ly α line luminosities where applicable, and spectra for all identified sources processed by the HETDEX detection pipeline. Extensive testing demonstrates that HETDEX redshifts agree to within Δ z < 0.02, 96.1% of the time to those in external spectroscopic catalogs. We measure the photometric counterpart fraction in deep ancillary Hyper Suprime-Cam imaging and find that only 55.5% of the LAE sample has an r -band continuum counterpart down to a limiting magnitude of r ∼ 26.2 mag (AB) indicating that an LAE search of similar sensitivity to HETDEX with photometric preselection would miss nearly half of the HETDEX LAE catalog sample. Data access and details about the catalog can be found online at http://hetdex.org/ . A copy of the catalogs presented in this work (Version 3.2) is available to download at Zenodo doi: 10.5281/zenodo.7448504 . 
    more » « less
  4. ABSTRACT We present an updated model of the cosmic ionizing background from the UV to the X-rays. Relative to our previous model, the new model provides a better match to a large number of up-to-date empirical constraints, including: (1) new galaxy and AGN luminosity functions; (2) stellar spectra including binary stars; (3) obscured and unobscured AGN; (4) a measurement of the non-ionizing UV background; (5) measurements of the intergalactic H i and He ii photoionization rates at z ∼ 0−6; (6) the local X-ray background; and (7) improved measurements of the intergalactic opacity. In this model, AGN dominate the H i ionizing background at z ≲ 3 and star-forming galaxies dominate it at higher redshifts. Combined with the steeply declining AGN luminosity function beyond z ∼ 2, the slow evolution of the H i ionization rate inferred from the high-redshift H i Ly α forest requires an escape fraction from star-forming galaxies that increases with redshift (a population-averaged escape fraction of $\approx 1{{\ \rm per\ cent}}$ suffices to ionize the intergalactic medium at z = 3 when including the contribution from AGN). We provide effective photoionization and photoheating rates calibrated to match the Planck 2018 reionization optical depth and recent constraints from the He ii Ly α forest in hydrodynamic simulations. 
    more » « less
  5. Abstract

    Active dwarf galaxies are important because they contribute to the evolution of dwarf galaxies and can reveal their hosted massive black holes. However, the sample size of such sources beyond the local universe is still highly limited. In this work, we search for active dwarf galaxies in the recently completed XMM-Spitzer Extragalactic Representative Volume Survey (XMM-SERVS). XMM-SERVS is currently the largest medium-depth X-ray survey covering 13 deg2in three extragalactic fields, which all have well-characterized multiwavelength information. After considering several factors that may lead to misidentifications, we identify 73 active dwarf galaxies atz< 1, which constitutes the currently largest X-ray-selected sample beyond the local universe. Our sources are generally less obscured than predictions based on the massive-AGN (active galactic nucleus) X-ray luminosity function and have a low radio-excess fraction. We find that our sources reside in environments similar to those of inactive dwarf galaxies. We further quantify the accretion distribution of the dwarf-galaxy population after considering various selection effects and find that it decreases with X-ray luminosity, but redshift evolution cannot be statistically confirmed. Depending on how we define an AGN, the active fraction may or may not show a strong dependence on stellar mass. Their Eddington ratios and X-ray bolometric corrections significantly deviate from the expected relation, which is likely caused by several large underlying systematic biases when estimating the relevant parameters for dwarf galaxies. Throughout this work, we also highlight problems in reliably measuring photometric redshifts and overcoming strong selection effects for distant active dwarf galaxies.

     
    more » « less