Soft robotics holds tremendous potential for various applications, especially in unstructured environments such as search and rescue operations. However, the lack of autonomy and teleoperability, limited capabilities, absence of gait diversity and real-time control, and onboard sensors to sense the surroundings are some of the common issues with soft-limbed robots. To overcome these limitations, we propose a spatially symmetric, topologically-stable, soft-limbed tetrahedral robot that can perform multiple locomotion gaits. We introduce a kinematic model, derive locomotion trajectories for different gaits, and design a teleoperation mechanism to enable real-time human-robot collaboration. We use the kinematic model to map teleoperation inputs and ensure smooth transitions between gaits. Additionally, we leverage the passive compliance and natural stability of the robot for toppling and obstacle navigation. Through experimental tests, we demonstrate the robot's ability to tackle various locomotion challenges, adapt to different situations, and navigate obstructed environments via teleoperation. 
                        more » 
                        « less   
                    
                            
                            Study on Soft Robotic Pinniped Locomotion
                        
                    
    
            Legged locomotion is a highly promising but under–researched subfield within the field of soft robotics. The compliant limbs of soft-limbed robots offer numerous benefits, including the ability to regulate impacts, tolerate falls, and navigate through tight spaces. These robots have the potential to be used for various applications, such as search and rescue, inspection, surveillance, and more. The state-of-the-art still faces many challenges, including limited degrees of freedom, a lack of diversity in gait trajectories, insufficient limb dexterity, and limited payload capabilities. To address these challenges, we develop a modular soft-limbed robot that can mimic the locomotion of pinnipeds. By using a modular design approach, we aim to create a robot that has improved degrees of freedom, gait trajectory diversity, limb dexterity, and payload capabilities. We derive a complete floating-base kinematic model of the proposed robot and use it to generate and experimentally validate a variety of locomotion gaits. Results show that the proposed robot is capable of replicating these gaits effectively. We compare the locomotion trajectories under different gait parameters against our modeling results to demonstrate the validity of our proposed gait models. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10454190
- Date Published:
- Journal Name:
- 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)
- Page Range / eLocation ID:
- 65 to 71
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Soft robots, known for their compliance and deformable nature, have emerged as a transformative field, giving rise to various prototypes and locomotion capabilities. Despite continued research efforts that have shown significant promise, the quest for energy-efficient mobility in soft-limbed robots remains relatively elusive. We introduce a discrete locomotion gait called “tumbling,” designed to conserve energy and implemented in a topologically symmetric soft-limbed robot. The incorporation of tumbling enhances the overall locomotive abilities of soft-limbed robots, offering advantages such as increased agility, adaptability, and the ability to correct orientation, which are essential for navigating non-engineered environments that include natural-like irregular terrains with obstacles. The principle behind tumbling locomotion involves a deliberate shift in the robot's center of gravity in the direction of motion, guided by the kinematics of its soft limbs. To validate this locomotion strategy, we developed a robot simulation model operating within a virtual environment that incorporates physics and contact interactions. After optimizing the tumbling locomotion strategy through simulations, we conducted experimental tests on a physical robot prototype. The experiments validate the effectiveness of the proposed tumbling gait. We conducted an energy cost analysis to compare the tumbling locomotion with the previously reported crawling gait of the robot. The results of this analysis demonstrate that tumbling represents an energy-efficient mode of locomotion for soft robots, saving up to 60% and 65% energy than crawling locomotion on flat and natural-like irregular terrains, respectively.more » « less
- 
            Snakes are a remarkable evolutionary success story. Numerous snake-inspired robots have been proposed over the years. Soft robotic snakes (SRS), with their continuous and smooth bending capability, can better mimic their biological counterparts' unique characteristics. Prior SRSs are limited to planar operation with a limited number of planar gaits. We propose a novel SRS with spatial bending ability and investigate snake locomotion gaits beyond the planar gaits of the state-of-the-art systems. We derive a complete floating-base kinematic model of the SRS and use the model to derive joint-space trajectories for serpentine and inward/outward rolling locomotion gaits. These gaits are experimentally validated under varying frequency and amplitude of gait cycles. The results qualitatively and quantitatively validate the proposed SRSs' ability to leverage spatial bending to achieve locomotion gaits not possible with current SRS designs.more » « less
- 
            Soft robots hold significant potential in legged locomotion due to their inherent deformability, enabling enhanced adaptability to various environmental conditions and the generation of diverse locomotion gaits. While various soft robots have been proposed for terrestrial locomotion, research on dynamically-stable locomotion, such as trotting, with actuated soft bending limbs remains limited. We introduce a pneumatically-actuated soft quadruped featuring a soft body capable of a variety of dynamically-stable trotting locomotion. We utilize soft limb kinematics and parameterize fundamental limb locomotion to obtain quadrupedal locomotion trajectories for both linear and curvilinear motions. We also employ a physics-enabled dynamic model to optimize and evaluate trotting locomotion trajectories for dynamic stability. We further validate the stable locomotion trajectories through empirical experiments conducted on a soft quadruped prototype. The results demonstrate that the quadruped trots at a peak speed of 1.24 body lengths per second when traversing flat and uneven terrains, including slopes, cluttered areas, and naturalistic irregular surfaces. Furthermore, we compare the energy efficiency between trotting and crawling locomotion. The findings reveal that trotting is significantly more energy-efficient than crawling, with an average energy saving of up to 42%.Note to Practitioners—This paper was motivated by the challenge of achieving dynamically stable and efficient locomotion in soft quadrupeds. Many soft-legged robots are typically designed for statically stable, albeit inefficient and slow, locomotion gaits such as crawling. Our research aims to address this practical challenge of improving mobility in soft-legged robots. We develop a novel soft quadruped with pneumatically-actuated soft limbs that achieves efficient trotting that is 42% more energy-efficient than crawling. This work is particularly relevant for industries requiring adaptable and efficient navigation in environments, such as search and rescue, agricultural monitoring, and exploration. The development and optimization of trotting gaits through a physics-enabled dynamic model for dynamic stability provide a foundational framework for enhancing the adaptability and operational utility of soft robots. While our findings mark a significant step forward, challenges remain in deploying these locomotion strategies on autonomous untethered robots with onboard sensor feedback. Future research will focus on these areas, aiming to improve the practical deployment and robustness of soft robotic locomotive systems.more » « less
- 
            Soft robotic snakes made of compliant materials can continuously deform their bodies and, therefore, mimic the biological snakes' flexible and agile locomotion gaits better than their rigid-bodied counterparts. Without wheel support, to date, soft robotic snakes are limited to emulating planar locomotion gaits, which are derived via kinematic modeling and tested on robotic prototypes. Given that the snake locomotion results from the reaction forces due to the distributed contact between their skin and the ground, it is essential to investigate the locomotion gaits through efficient dynamic models capable of accommodating distributed contact forces. We present a complete spatial dynamic model that utilizes a floating-base kinematic model with distributed contact dynamics for a pneumatically powered soft robotic snake. We numerically evaluate the feasibility of the planar and spatial rolling gaits utilizing the proposed model and experimentally validate the corresponding locomotion gait trajectories on a soft robotic snake prototype. We qualitatively and quantitatively compare the numerical and experimental results which confirm the validity of the proposed dynamic model.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    