skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Teleoperation of Soft Modular Robots: Study on Real-time Stability and Gait Control
Soft robotics holds tremendous potential for various applications, especially in unstructured environments such as search and rescue operations. However, the lack of autonomy and teleoperability, limited capabilities, absence of gait diversity and real-time control, and onboard sensors to sense the surroundings are some of the common issues with soft-limbed robots. To overcome these limitations, we propose a spatially symmetric, topologically-stable, soft-limbed tetrahedral robot that can perform multiple locomotion gaits. We introduce a kinematic model, derive locomotion trajectories for different gaits, and design a teleoperation mechanism to enable real-time human-robot collaboration. We use the kinematic model to map teleoperation inputs and ensure smooth transitions between gaits. Additionally, we leverage the passive compliance and natural stability of the robot for toppling and obstacle navigation. Through experimental tests, we demonstrate the robot's ability to tackle various locomotion challenges, adapt to different situations, and navigate obstructed environments via teleoperation.  more » « less
Award ID(s):
2326536 2327702 2325491
PAR ID:
10454191
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
2023 IEEE International Conference on Soft Robotics (RoboSoft)
Page Range / eLocation ID:
01 to 07
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Legged locomotion is a highly promising but under–researched subfield within the field of soft robotics. The compliant limbs of soft-limbed robots offer numerous benefits, including the ability to regulate impacts, tolerate falls, and navigate through tight spaces. These robots have the potential to be used for various applications, such as search and rescue, inspection, surveillance, and more. The state-of-the-art still faces many challenges, including limited degrees of freedom, a lack of diversity in gait trajectories, insufficient limb dexterity, and limited payload capabilities. To address these challenges, we develop a modular soft-limbed robot that can mimic the locomotion of pinnipeds. By using a modular design approach, we aim to create a robot that has improved degrees of freedom, gait trajectory diversity, limb dexterity, and payload capabilities. We derive a complete floating-base kinematic model of the proposed robot and use it to generate and experimentally validate a variety of locomotion gaits. Results show that the proposed robot is capable of replicating these gaits effectively. We compare the locomotion trajectories under different gait parameters against our modeling results to demonstrate the validity of our proposed gait models. 
    more » « less
  2. Soft robots, known for their compliance and deformable nature, have emerged as a transformative field, giving rise to various prototypes and locomotion capabilities. Despite continued research efforts that have shown significant promise, the quest for energy-efficient mobility in soft-limbed robots remains relatively elusive. We introduce a discrete locomotion gait called “tumbling,” designed to conserve energy and implemented in a topologically symmetric soft-limbed robot. The incorporation of tumbling enhances the overall locomotive abilities of soft-limbed robots, offering advantages such as increased agility, adaptability, and the ability to correct orientation, which are essential for navigating non-engineered environments that include natural-like irregular terrains with obstacles. The principle behind tumbling locomotion involves a deliberate shift in the robot's center of gravity in the direction of motion, guided by the kinematics of its soft limbs. To validate this locomotion strategy, we developed a robot simulation model operating within a virtual environment that incorporates physics and contact interactions. After optimizing the tumbling locomotion strategy through simulations, we conducted experimental tests on a physical robot prototype. The experiments validate the effectiveness of the proposed tumbling gait. We conducted an energy cost analysis to compare the tumbling locomotion with the previously reported crawling gait of the robot. The results of this analysis demonstrate that tumbling represents an energy-efficient mode of locomotion for soft robots, saving up to 60% and 65% energy than crawling locomotion on flat and natural-like irregular terrains, respectively. 
    more » « less
  3. Soft robotic snakes made of compliant materials can continuously deform their bodies and, therefore, mimic the biological snakes' flexible and agile locomotion gaits better than their rigid-bodied counterparts. Without wheel support, to date, soft robotic snakes are limited to emulating planar locomotion gaits, which are derived via kinematic modeling and tested on robotic prototypes. Given that the snake locomotion results from the reaction forces due to the distributed contact between their skin and the ground, it is essential to investigate the locomotion gaits through efficient dynamic models capable of accommodating distributed contact forces. We present a complete spatial dynamic model that utilizes a floating-base kinematic model with distributed contact dynamics for a pneumatically powered soft robotic snake. We numerically evaluate the feasibility of the planar and spatial rolling gaits utilizing the proposed model and experimentally validate the corresponding locomotion gait trajectories on a soft robotic snake prototype. We qualitatively and quantitatively compare the numerical and experimental results which confirm the validity of the proposed dynamic model. 
    more » « less
  4. Snakes are a remarkable evolutionary success story. Numerous snake-inspired robots have been proposed over the years. Soft robotic snakes (SRS), with their continuous and smooth bending capability, can better mimic their biological counterparts' unique characteristics. Prior SRSs are limited to planar operation with a limited number of planar gaits. We propose a novel SRS with spatial bending ability and investigate snake locomotion gaits beyond the planar gaits of the state-of-the-art systems. We derive a complete floating-base kinematic model of the SRS and use the model to derive joint-space trajectories for serpentine and inward/outward rolling locomotion gaits. These gaits are experimentally validated under varying frequency and amplitude of gait cycles. The results qualitatively and quantitatively validate the proposed SRSs' ability to leverage spatial bending to achieve locomotion gaits not possible with current SRS designs. 
    more » « less
  5. Abstract Diverse and adaptable modes of complex motion observed at different scales in living creatures are challenging to reproduce in robotic systems. Achieving dexterous movement in conventional robots can be difficult due to the many limitations of applying rigid materials. Robots based on soft materials are inherently deformable, compliant, adaptable, and adjustable, making soft robotics conducive to creating machines with complicated actuation and motion gaits. This review examines the mechanisms and modalities of actuation deformation in materials that respond to various stimuli. Then, strategies based on composite materials are considered to build toward actuators that combine multiple actuation modes for sophisticated movements. Examples across literature illustrate the development of soft actuators as free‐moving, entirely soft‐bodied robots with multiple locomotion gaits via careful manipulation of external stimuli. The review further highlights how the application of soft functional materials into robots with rigid components further enhances their locomotive abilities. Finally, taking advantage of the shape‐morphing properties of soft materials, reconfigurable soft robots have shown the capacity for adaptive gaits that enable transition across environments with different locomotive modes for optimal efficiency. Overall, soft materials enable varied multimodal motion in actuators and robots, positioning soft robotics to make real‐world applications for intricate and challenging tasks. 
    more » « less