skip to main content


Title: Semiconducting to Metallic Electronic Landscapes in Defects‐Controlled 2D π‐d Conjugated Coordination Polymer Thin Films
Abstract

Two‐dimensional coordination polymers (2DCPs) have been predicted to exhibit exotic properties such as superconductivity, topological insulating behavior, catalytic activity, and superior ion transport for energy applications; experimentally, these materials have fallen short of their expectation due to the lack of synthesis protocols that yield continuous, large crystallite domains, and highly ordered thin films with controllable physical and chemical properties. Herein, the fabrication of large‐area, highly ordered 2DCP thin films with large crystallite domains using chemical vapor deposition (CVD) approaches is described. It is demonstrated that defects and the packing motifs of 2DCP thin films may be controlled by adjusting the vapor–vapor and vapor–solid interactions of the metal and organic linker precursors during the CVD fabrication process. Such control allows for the fabrication of defects‐controlled 2DCP thin films that show either semiconducting or metallic behavior. The findings provide the first demonstration of tuning the electrical properties of sub 100 nm‐thick continuous 2DCP thin films by controlling their electronic landscape through defect engineering. As such, it is determined that large‐area, highly ordered 2DCP thin films may undergo a semiconducting to metallic transition that is correlated to changes in morphology, crystalline domain sizes, crystallite orientation, defect interactions, and electronic structure.

 
more » « less
Award ID(s):
2016191 1824263
NSF-PAR ID:
10454262
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
31
Issue:
4
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Chemical vapor deposition (CVD)-grown monolayer (ML) molybdenum disulfide (MoS 2 ) is a promising material for next-generation integrated electronic systems due to its capability of high-throughput synthesis and compatibility with wafer-scale fabrication. Several studies have described the importance of Schottky barriers in analyzing the transport properties and electrical characteristics of MoS 2 field-effect-transistors (FETs) with metal contacts. However, the analysis is typically limited to single devices constructed from exfoliated flakes and should be verified for large-area fabrication methods. In this paper, CVD-grown ML MoS 2 was utilized to fabricate large-area (1 cm × 1 cm) FET arrays. Two different types of metal contacts (i.e. Cr/Au and Ti/Au) were used to analyze the temperature-dependent electrical characteristics of ML MoS 2 FETs and their corresponding Schottky barrier characteristics. Statistical analysis provides new insight about the properties of metal contacts on CVD-grown MoS 2 compared to exfoliated samples. Reduced Schottky barrier heights (SBH) are obtained compared to exfoliated flakes, attributed to a defect-induced enhancement in metallization of CVD-grown samples. Moreover, the dependence of SBH on metal work function indicates a reduction in Fermi level pinning compared to exfoliated flakes, moving towards the Schottky–Mott limit. Optical characterization reveals higher defect concentrations in CVD-grown samples supporting a defect-induced metallization enhancement effect consistent with the electrical SBH experiments. 
    more » « less
  2. The unique two-dimensional structure and outstanding electronic, thermal, and mechanical properties of graphene have attracted the interest of scientists and engineers from various fields. The first step in translating the excellent properties of graphene into practical applications is the preparation of large area, continuous graphene films. Chemical vapour deposition (CVD) graphene has received increasing attention because it provides access to large-area, uniform, and continuous films of high quality. However, current CVD synthetic techniques utilize metal substrates (Cu or Ni) to catalyse the growth of graphene and post-growth transfer of the graphene film to a substrate of interest is critical for most applications such as electronics, photonics, and spintronics. Here we discuss recent advances in the transfer of as-grown CVD graphene to target substrates. The methods that afford CVD graphene on a target substrate are summarized under three categories: transfer with a support layer, transfer without a support layer, and direct growth on target substrates. At present the first two groups dominate the field and research efforts are directed towards refining the choice of the support layer. The support layer plays a vital role in the transfer process because it has direct contact with the atomically thin graphene surface, affecting its properties and determining the quality of the transferred graphene. 
    more » « less
  3. Sequential vapor doping is a vital process in controlling the electronic transport properties of semiconducting polymers relevant to opto-electronic and thermoelectric applications. Here, we employed an in situ conductivity method to determine the temporal electronic conductivity ( σ ) profile when vapor 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) doping poly(3-hexylthiophene) (P3HT) thin films held at a different temperatures. The temporal profile of σ first showed a fast exponential increase, followed by a brief linear increase until reaching a σ max , and followed by a slow decay in σ . The σ profile were correlated to structural changes through a combination UV-vis-NIR spectroscopy, X-ray scattering, and Raman spectroscopy. We find that the timing for σ max , and subsequent drop in σ of P3HT:F4TCNQ thin films corresponds to the evolution of doping in the crystalline (ordered) and amorphous (disordered) domains. Specifically, Raman spectroscopy resonant at 785 nm highlighted that the crystalline domains reached their saturated doping level near σ max and subsequent smaller level of doping occurred in regions in the disordered domains. Overall, this study emphasizes the importance of granular understanding of σ and the corresponding structural changes in the crystalline and amorphous domains. 
    more » « less
  4. null (Ed.)
    Introducing charge carriers is of paramount importance for increasing the efficiency of organic semiconducting materials. Various methods of extrinsic doping, where molecules or atoms with large/small reduction potentials are blended with the semiconductor, can lead to dopant aggregation, migration, phase segregation, and morphology alteration. Self-doping overcomes these challenges by structurally linking the dopant directly to the organic semiconductor. However, for their practical incorporation into devices, self-doped organic materials must be cast into thin-films, yet processing methods to allow for the formation of continuous and uniform films have not been developed beyond simple drop-casting. Whilst self-doped organic molecules afford the remarkable ability to position dopants with molecular precision and control of attachment mode, their steric bulk inevitably disrupts the crystallization on surfaces. As such, there is great interest in the development of processing modalities that allow deposited molecules to converge to the thermodynamic minimum of a well-ordered and highly crystalline organic thin film instead of getting trapped in local disordered minima that represent metastable configurations. By contrasting drop casting, ultrasonic deposition, and physical vapor deposition, we investigate the free energy landscape of the crystallization of sterically hindered self-doped perylene diimide thin films. A clear relationship is established between processing conditions, the crystallinity and order within the deposited films, the dopant structures and the resulting spin density. We find physical vapor deposition to be a robust method capable of producing smooth, continuous, highly ordered self-doped organic small molecule thin-films with tailored spin concentrations and well-defined morphologies. 
    more » « less
  5. Abstract

    The thermoelectric properties of semiconducting polymers are influenced by both the carrier concentration and the morphology that sets the pathways for charge transport. A combination of optical, morphological, and electrical characterization is used to assess the effect of the role of disorder on the thermoelectric properties of thin films of poly(3‐hexylthiophene) (P3HT) doped with 2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane (F4TCNQ). Controlled morphologies are formed by casting blends of regioregular (RR‐P3HT) and regiorandom (RRa‐P3HT) and then subsequently doped with F4TCNQ from the vapor phase. Optical spectroscopy and X‐ray scattering show that vapor phase doping induces order in the disordered regions of thin films and increases the long‐range connectivity of the film. The thermoelectric properties are assessed as a function of composition and it is shown that while the Seebeck coefficient is affected by structural ordering, the electrical conductivity and power factor are more strongly correlated with the long‐range connectivity of ordered domains.

     
    more » « less