skip to main content


Title: Robustness analysis of uncertain time‐varying systems using integral quadratic constraints with time‐varying multipliers
Summary

This article presents a dissipativity approach for robustness analysis using the framework of integral quadratic constraints (IQCs). The derived results apply for linear time‐varying nominal systems with uncertain initial conditions. IQC multipliers are used to describe the sets of allowable uncertainty operators, and signal IQC multipliers are used to describe the sets of allowable disturbance signals. The novel concepts of dichotomic nodes and their corresponding factorizations are introduced, which allow for the aforementioned multipliers to be general time‐varying operators. The results are illustrated via the robustness analysis of a flight controller for an unmanned aircraft system tasked to perform a Split‐S maneuver.

 
more » « less
Award ID(s):
1650465
NSF-PAR ID:
10454314
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
International Journal of Robust and Nonlinear Control
Volume:
31
Issue:
3
ISSN:
1049-8923
Page Range / eLocation ID:
p. 733-758
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    This paper focuses on the robustness analysis of discrete‐time, linear time‐varying (LTV) systems subject to various uncertainties, such as static and dynamic, time‐invariant and time‐varying, linear perturbations, and unknown initial conditions. The proposed approach is based on integral quadratic constraint theory and allows for a potentially more accurate characterization of the set in which the initial state resides by imposing separate constraints on the initial values of the state variables as opposed to simply requiring the initial state to lie in some ellipsoid. The adopted problem formulation facilitates the analysis of uncertain LTV systems subject to disturbance inputs that are bounded pointwise in time, and the developed results enable determining useful pointwise bounds on the performance outputs given such inputs. The main analysis result is given for eventually periodic nominal systems, which include linear time‐invariant, finite horizon, and periodic systems as special cases. The analysis conditions are expressed as linear matrix inequalities. Two additional results stemming from the main analysis theorem are provided that can be used to determine overapproximated ellipsoidal reachable sets. Finally, the utility of the proposed approach is demonstrated in an illustrative example.

     
    more » « less
  2. Modern control theory provides us with a spectrum of methods for studying the interconnection of dynamic systems using input-output properties of the interconnected subsystems. Perhaps the most advanced framework for such inputoutput analysis is the use of Integral Quadratic Constraints (IQCs), which considers the interconnection of a nominal linear system with an unmodelled nonlinear or uncertain subsystem with known input-output properties. Although these methods are widely used for Ordinary Differential Equations (ODEs), there have been fewer attempts to extend IQCs to infinitedimensional systems. In this paper, we present an IQC-based framework for Partial Differential Equations (PDEs) and Delay Differential Equations (DDEs). First, we introduce infinitedimensional signal spaces, operators, and feedback interconnections. Next, in the main result, we propose a formulation of hard IQC-based input-output stability conditions, allowing for infinite-dimensional multipliers. We then show how to test hard IQC conditions with infinite-dimensional multipliers on a nominal linear PDE or DDE system via the Partial Integral Equation (PIE) state-space representation using a sufficient version of the Kalman-Yakubovich-Popov lemma (KYP). The results are then illustrated using four example problems with uncertainty and nonlinearity. 
    more » « less
  3. This paper addresses the problem of hybrid control for a class of switched uncertain systems. The switched system under consideration is subject to structured uncertain dynamics in a linear fractional transformation (LFT) form and time-varying input delays. A novel hybrid controller is proposed, which consists of three major components: the integral quadratic constraint (IQC) dynamics, the continuous dynamics, and the jump dynamics. The IQC dynamics are developed by leveraging methodologies from robust control theory and are utilised to address the effects of time-varying input delays. The continuous dynamics are structured by feeding back not only measurement outputs but also some system's internal signals. The jump dynamics enforce a jump (update/reset) at every switching time instant for the states of both IQC dynamics and continuous dynamics. Based on this, robust stability of the overall hybrid closed-loop system is established under the average dwell time framework with multiple Lyapunov functions. Moreover, the associated control synthesis conditions are fully characterised as linear matrix inequalities, which can be solved efficiently. An application example on regulation of a nonlinear switched electronic circuit system has been used to demonstrate effectiveness and usefulness of the proposed approach. 
    more » « less
  4. There is substantial interest in assessing how exposure to environmental mixtures, such as chemical mixtures, affects child health. Researchers are also interested in identifying critical time windows of susceptibility to these complex mixtures. A recently developed method, called lagged kernel machine regression (LKMR), simultaneously accounts for these research questions by estimating the effects of time‐varying mixture exposures and by identifying their critical exposure windows. However, LKMR inference using Markov chain Monte Carlo (MCMC) methods (MCMC‐LKMR) is computationally burdensome and time intensive for large data sets, limiting its applicability. Therefore, we develop a mean field variational approximation method for Bayesian inference (MFVB) procedure for LKMR (MFVB‐LKMR). The procedure achieves computational efficiency and reasonable accuracy as compared with the corresponding MCMC estimation method. Updating parameters using MFVB may only take minutes, whereas the equivalent MCMC method may take many hours or several days. We apply MFVB‐LKMR to Programming Research in Obesity, Growth, Environment and Social Stressors (PROGRESS), a prospective cohort study in Mexico City. Results from a subset of PROGRESS using MFVB‐LKMR provide evidence of significant and positive association between second trimester cobalt levels andz‐scored birth weight. This positive association is heightened by cesium exposure. MFVB‐LKMR is a promising approach for computationally efficient analysis of environmental health data sets, to identify critical windows of exposure to complex mixtures.

     
    more » « less
  5. Abstract

    The analysis of time‐varying activity and connectivity patterns (i.e., the chronnectome) using resting‐state magnetic resonance imaging has become an important part of ongoing neuroscience discussions. The majority of previous work has focused on variations of temporal coupling among fixed spatial nodes or transition of the dominant activity/connectivity pattern over time. Here, we introduce an approach to capture spatial dynamics within functional domains (FDs), as well as temporal dynamics within and between FDs. The approach models the brain as a hierarchical functional architecture with different levels of granularity, where lower levels have higher functional homogeneity and less dynamic behavior and higher levels have less homogeneity and more dynamic behavior. First, a high‐order spatial independent component analysis is used to approximate functional units. A functional unit is a pattern of regions with very similar functional activity over time. Next, functional units are used to construct FDs. Finally, functional modules (FMs) are calculated from FDs, providing an overall view of brain dynamics. Results highlight the spatial fluidity within FDs, including a broad spectrum of changes in regional associations, from strong coupling to complete decoupling. Moreover, FMs capture the dynamic interplay between FDs. Patients with schizophrenia show transient reductions in functional activity and state connectivity across several FDs, particularly the subcortical domain. Activity and connectivity differences convey unique information in many cases (e.g., the default mode) highlighting their complementarity information. The proposed hierarchical model to capture FD spatiotemporal variations provides new insight into the macroscale chronnectome and identifies changes hidden from existing approaches.

     
    more » « less