skip to main content


Title: Tree diversity promotes growth of late successional species despite increasing deer damage in a restored forest
Abstract

The role of tree diversity in restored forests and its impact on key ecological processes like growth and resistance to herbivory has become increasingly important. We analyzed height growth and white‐tailed deerOdocoileus virginianusbrowsing damage to saplings of 16 broadleaved tree species in a large‐scale (13 ha) reforestation experiment in Maryland, USA, where we manipulated tree diversity in 70 1,225‐m2plots. After four growing seasons, higher plot‐level tree richness led to increased deer browsing damage (i.e., associational susceptibility). Despite increased deer damage to saplings in mixed plots, tree richness had no overall effect on sapling height growth. However, diversity–height relationships were related to species functional traits. Light demanding species with large leaves and faster growth rates had reduced heights in mixtures, whereas shade‐tolerant, slower‐growing species generally had either increased or unchanged height growth in diverse tree communities, likely related to increased canopy closure in mixtures relative to monocultures. We show that tree diversity can improve growth of late successional species despite exacerbated mammalian herbivore damage. By facilitating the establishment of species with a range of life‐history strategies, increased tree diversity may enhance ecosystem multi‐functionality in the early stages of forest restoration.

 
more » « less
NSF-PAR ID:
10454424
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology
Volume:
101
Issue:
8
ISSN:
0012-9658
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Management of tree cover, either to curb bush encroachment or to mitigate losses of woody cover to over‐browsing, is a major concern in savanna ecosystems. Once established, trees are often “trapped” as saplings, since interactions among disturbance, plant competition, and precipitation delay sapling recruitment into adult size classes. Saplings can be directly suppressed by wildlife browsing and competition from adjacent plants, and indirectly facilitated by grazers, such as cattle, which feed on neighboring grasses. Yet few experimental studies have simultaneously quantified the effects of cattle and wildlife on sapling growth, particularly over long time scales. We used a series of replicated 4‐ha herbivore‐manipulation plots to investigate the net effects of wildlife and moderate cattle grazing onAcacia drepanolobiumsapling growth over 10 years that encompassed extended wet and dry periods. We also simulated more intense cattle grazing using grass removal treatments (0.5‐m radius around saplings), and we quantified the role of intraspecific tree competition using neighborhood tree surveys (trees within a 3‐m radius). Wildlife, which included elephants, had a positive effect on sapling growth. Wildlife also reduced neighbor tree density during the 10‐yr study, which likely caused the positive effect of wildlife on saplings. Although moderate cattle grazing did not affect sapling growth, grass removal treatments simulating heavy grazing increased sapling growth. Both grass removal and neighbor tree effects on saplings were strongest during above‐average rainfall years following drought. This highlights that livestock‐driven reductions in grass cover and catastrophic wildlife damage to trees during droughts present a need, or an opportunity, for targeted management of sapling growth and woody plant cover during ensuing wet periods.

     
    more » « less
  2. Abstract

    Ungulates are leading drivers of plant communities worldwide, with impacts linked to animal density, disturbance and vegetation structure, and site productivity. Many ecosystems have more than one ungulate species; however, few studies have specifically examined the combined effects of two or more species on plant communities. We examined the extent to which two ungulate browsers (moose [Alces americanus]) and white‐tailed deer [Odocoileus virginianus]) have additive (compounding) or compensatory (opposing) effects on herbaceous layer composition and diversity, 5–6 years after timber harvest in Massachusetts,USA. We established three combinations of ungulates using two types of fenced exclosures – none (full exclosure), deer (partial exclosure), and deer + moose (control) in six replicated blocks. Species composition diverged among browser treatments, and changes were generally additive. Plant assemblages characteristic of closed canopy forests were less abundant and assemblages characteristic of open/disturbed habitats were more abundant in deer + moose plots compared with ungulate excluded areas. Browsing by deer + moose resulted in greater herbaceous species richness at the plot scale (169 m2) and greater woody species richness at the subplot scale (1 m2) than ungulate exclusion and deer alone. Browsing by deer + moose resulted in strong changes to the composition, structure, and diversity of forest herbaceous layers, relative to areas free of ungulates and areas browed by white‐tailed deer alone. Our results provide evidence that moderate browsing in forest openings can promote both herbaceous and woody plant diversity. These results are consistent with the classic grazing‐species richness curve, but have rarely been documented in forests.

     
    more » « less
  3. Abstract

    Enhancing tree diversity may be important to fostering resilience to drought‐related climate extremes. So far, little attention has been given to whether tree diversity can increase the survival of trees and reduce its variability in young forest plantations.

    We conducted an analysis of seedling and sapling survival from 34 globally distributed tree diversity experiments (363,167 trees, 168 species, 3744 plots, 7 biomes) to answer two questions: (1) Do drought and tree diversity alter the mean and variability in plot‐level tree survival, with higher and less variable survival as diversity increases? and (2) Do species that survive poorly in monocultures survive better in mixtures and do specific functional traits explain monoculture survival?

    Tree species richness reduced variability in plot‐level survival, while functional diversity (Rao's Q entropy) increased survival and also reduced its variability. Importantly, the reduction in survival variability became stronger as drought severity increased. We found that species with low survival in monocultures survived comparatively better in mixtures when under drought. Species survival in monoculture was positively associated with drought resistance (indicated by hydraulic traits such as turgor loss point), plant height and conservative resource‐acquisition traits (e.g. low leaf nitrogen concentration and small leaf size).

    Synthesis.The findings highlight: (1) The effectiveness of tree diversity for decreasing the variability in seedling and sapling survival under drought; and (2) the importance of drought resistance and associated traits to explain altered tree species survival in response to tree diversity and drought. From an ecological perspective, we recommend mixing be considered to stabilize tree survival, particularly when functionally diverse forests with drought‐resistant species also promote high survival of drought‐sensitive species.

     
    more » « less
  4. Abstract Questions

    What are the primary biotic and abiotic factors driving composition and abundance of naturally regenerated tree seedlings across forest landscapes of Maine? Do seedling species richness (SR) and density (SD) decrease with improved growing conditions (climate and soil), but increase with increased diversity of overstorey composition and structure? Does partial harvesting disproportionately favour relative dominance of shade‐intolerant hardwoods (PIHD) over shade‐tolerant softwoods (PTSD)?

    Location

    Forest landscapes across the diverse eco‐regions and forest types of Maine,USA.

    Methods

    This study usedUSDAForest Service Forest Inventory Analysis permanent plots (n = 10 842), measured every 5 yr since 1999. The best models for each response variable (SR,SD,PIHDandPTSD) were developed based onAICand biological interpretability, while considering 35 potential explanatory variables incorporating climate, soil, site productivity, overstorey structure and composition, and past harvesting.

    Results

    Mean annual temperature was the most important abiotic factor, whereas overstorey tree size diversity was the most important biotic factor forSRandSD. Both mean annual temperature and overstorey tree size diversity had a curvilinear relationship withSRandSD. Average overstorey shade tolerance and percentage tolerant softwood basal area in the overstorey were the top predictor variables ofPIHDandPTSD,respectively. Partial harvesting favouredPIHDbut notPTSD.

    Conclusions

    This is one of the first studies to comprehensively evaluate a number of factors influencing naturally established tree seedlings at a broad landscape scale in the Northern Forest region of the easternUSAand Canada. Despite limitations associated with relatively small plot size, large seedling size class and lack of direct measurements of light, water and nutrients, this study documents the influence of these factors amid high variability associated with patterns of natural regeneration. The curvilinear relationship between mean annual temperature withSRandSDsupports the argument that species richness and abundance usually have unimodal relationships with productivity indicators, whereas the curvilinear relationship between overstorey tree size diversity andSRandSDsuggest that moderate overstorey diversity incorporates multiple species as well as higher seedling individuals.

     
    more » « less
  5. null (Ed.)
    Anthropogenic disturbances are changing the structure and composition of tropical forests worldwide. Multiple disturbances often occur simultaneously in forests: for example, hunting and logging are within-forest disturbances that impact vast areas of seemingly intact rainforests. Despite recent work on the individual effects of these disturbances, our understanding of how they interact to influence tree communities is still limited. In northern Republic of Congo, we explored the effects of hunting and logging on tree communities. Over an 8-year period, we monitored 12,552 tree stems (≥ 10 cm diameter-at-breast height) spread over 30 1-ha plots along a gradient of human disturbance to compare the tree diversity between hunted and logged forest, once-logged forest, and protected forest free of both disturbances. Tree density, species richness, and community composition were affected by both hunting and logging. Forest close to human settlements was richer, more heterogenous, and more dynamic in species composition across censuses. In hunted and logged forest, fast-growing secondary species with low shade tolerance replaced old growth species. Comparatively, the once-logged forest had the greatest stem density and intermediate species richness with an increased density of shade-bearing species over time. Both tree species spatial turnover and tree recruitment were greatly affected by proximity to human settlements. A shift towards abiotically dispersed trees and increasing seed predation by rodents near villages can partly explain the differences in tree recruitment across the forest types. The combination of hunting and logging seems to have a greater impact on tree communities than either single disturbance, especially with nearness to villages. 
    more » « less