skip to main content


Title: Congestus modes in circulating equilibria of the tropical atmosphere in a two‐column model

A two‐column radiative–convective equilibrium (RCE) model is used to study the depth of convection that develops in the subsiding branch of a Walker‐like overturning circulation. The model numerically solves for two‐dimensional non‐rotating hydrostatic flow, which is damped by momentum diffusion in the boundary layer and model interior, and by convective momentum transport. Convection, clouds and radiative transfer are parametrized, and the convection scheme does not include explicit freezing or melting.

While integrating the model towards local RCE, the level of neutral buoyancy (LNB) fluctuates between mid‐ and high levels. Evaporation of detrained moisture at the LNB locally cools the environment, so that the final RCE state has a stable layer at mid‐levels (550 hPa ≈ 50–100 hPa below 0 °C), which is unrelated to melting of ice. Preferred detrainment at mid‐ and high levels leaves the middle‐to‐upper troposphere relatively dry.

A circulation is introduced by incrementally lowering the sea‐surface temperature in one column, which collapses convection: first to a congestus mode with tops near 550 hPa, below the dry layer created in RCE; then to congestus with tops near 650 hPa; and finally to shallow cumulus with tops near 850 hPa. Critical to stabilizing congestus near 650 hPa is large radiative cooling near moist cumulus tops under a dry upper atmosphere. This congestus mode is very sensitive, and only develops when horizontal temperature gradients created by evaporative and radiative cooling can persist against the work of gravity waves. This only happens in runs with ample momentum diffusion, which are those with convective momentum transport or large domains.

Compared to the shallow mode, the congestus mode produces a deep moist layer and more precipitation. This reduces radiative cooling in the cloud layer and enhances stability near the cloud base, which weakens the circulation, and leads to less precipitation over the warm ocean.

 
more » « less
NSF-PAR ID:
10454506
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Quarterly Journal of the Royal Meteorological Society
Volume:
144
Issue:
717
ISSN:
0035-9009
Page Range / eLocation ID:
p. 2676-2692
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This study examines how the congestus mode of tropical convection is expressed in numerical simulations of radiative‐convective equilibrium (RCE). We draw insights from the ensemble of cloud‐resolving models participating in the RCE Model Intercomparison Project (RCEMIP) and from a new ensemble of two‐dimensional RCE simulations. About half of the RCEMIP models produce a congestus circulation that is distinct from the deep and shallow modes. In both ensembles, the congestus circulation strengthens with large‐scale convective aggregation, and in the 2D ensemble this comes at the expense of the shallow circulation centered at the top of the boundary layer. Congestus invigoration occurs because aggregation dries out the upper troposphere, which allows moist congestus outflow to undergo strong radiative cooling. The cooling generates divergence that promotes continued congestus overturning (a positive feedback). This mechanism is fundamentally similar to the driving of shallow circulations by radiative cooling at the top of the surface boundary layer. Aggregation and congestus invigoration are also associated with enhanced static stability throughout the troposphere, but a modeling experiment shows that enhanced stability is not necessary for congestus invigoration; rather, invigoration itself contributes to the stability increase via its impact on the vertical profile of radiative cooling. Changes in entrainment cooling are also found to play an important role in stability enhancement, as has been suggested previously. When present, congestus circulations have a large impact on the mean RCE atmospheric state; for this reason, their inconsistent representation in models and their impact on the real tropical atmosphere warrant further scrutiny.

     
    more » « less
  2. Abstract

    A 3‐D cloud‐resolving model has been used to investigate the domain size dependence of simulations of convective self‐aggregation (CSA) in radiative‐convective equilibrium. We investigate how large a domain is needed to allow multiple convective clusters and also how the properties equilibrated CSA depend on domain size. We used doubly periodic square domains of widths 768, 1,536, 3,072, and 6,144 km, over 350 simulated days. In the 768‐, 1,536‐, and 3,072‐km domains, the simulations produced circular convective clusters surrounded by broader regions of dry, subsiding air. In the 6,144‐km domain, the convection ultimately forms two semiconnected bands. As the domain size increases, equilibrated CSA moistens in two ways. First, as the circulation widens, this leads to stronger boundary layer winds and a more humid boundary layer. Second, the stronger inflow into the convective region boundary layer is associated with a warmer convective region boundary layer, which leads to intensified deep convection, more melting and freezing near the freezing level, enhanced midlevel stability, increased congestus activity, and detrainment of moist air into the dry region. In the larger domains, the deep convection and congestus slowly oscillate out of phase with each other with a time period of about 25 to 30 days. We hypothesize that other important domain size sensitivities, including a decrease in net moist static energy export from the convective region, are fundamentally linked to the increasing relationship between domain size and boundary layer wind speed. Our results suggest that the statistics of CSA converge only for domains wider than about 3,000 km.

     
    more » « less
  3. Abstract

    The Radiative‐Convective Equilibrium Model Intercomparison Project (RCEMIP) is an intercomparison of multiple types of numerical models configured in radiative‐convective equilibrium (RCE). RCE is an idealization of the tropical atmosphere that has long been used to study basic questions in climate science. Here, we employ RCE to investigate the role that clouds and convective activity play in determining cloud feedbacks, climate sensitivity, the state of convective aggregation, and the equilibrium climate. RCEMIP is unique among intercomparisons in its inclusion of a wide range of model types, including atmospheric general circulation models (GCMs), single column models (SCMs), cloud‐resolving models (CRMs), large eddy simulations (LES), and global cloud‐resolving models (GCRMs). The first results are presented from the RCEMIP ensemble of more than 30 models. While there are large differences across the RCEMIP ensemble in the representation of mean profiles of temperature, humidity, and cloudiness, in a majority of models anvil clouds rise, warm, and decrease in area coverage in response to an increase in sea surface temperature (SST). Nearly all models exhibit self‐aggregation in large domains and agree that self‐aggregation acts to dry and warm the troposphere, reduce high cloudiness, and increase cooling to space. The degree of self‐aggregation exhibits no clear tendency with warming. There is a wide range of climate sensitivities, but models with parameterized convection tend to have lower climate sensitivities than models with explicit convection. In models with parameterized convection, aggregated simulations have lower climate sensitivities than unaggregated simulations.

     
    more » « less
  4. Abstract

    A framework is introduced to investigate the indirect effect of aerosol loading on tropical deep convection using three-dimensional limited-domain idealized cloud-system-resolving model simulations coupled with large-scale dynamics over fixed sea surface temperature. The large-scale circulation is parameterized using the spectral weak temperature gradient (WTG) approximation that utilizes the dominant balance between adiabatic cooling and diabatic heating in the tropics. The aerosol loading effect is examined by varying the number of cloud condensation nuclei (CCN) available to form cloud droplets in the two-moment bulk microphysics scheme over a wide range of environments from 30 to 5000 cm−3. The radiative heating is held at a constant prescribed rate in order to isolate the microphysical effects. Analyses are performed over the period after equilibrium is achieved between convection and the large-scale environment. Mean precipitation is found to decrease modestly and monotonically when the aerosol number concentration increases as convection gets weaker, despite the increase in cloud liquid water in the warm-rain region and ice crystals aloft. This reduction is traced down to the reduction in surface enthalpy fluxes as an energy source to the atmospheric column induced by the coupling of the large-scale motion, though the gross moist stability remains constant. Increasing CCN concentration leads to 1) a cooler free troposphere because of a reduction in the diabatic heating and 2) a warmer boundary layer because of suppressed evaporative cooling. This dipole temperature structure is associated with anomalously descending large-scale vertical motion above the boundary layer and ascending motion at lower levels. Sensitivity tests suggest that changes in convection and mean precipitation are unlikely to be caused by the impact of aerosols on cloud droplets and microphysical properties but rather by accounting for the feedback from convective adjustment with the large-scale dynamics. Furthermore, a simple scaling argument is derived based on the vertically integrated moist static energy budget, which enables estimation of changes in precipitation given known changes in surfaces enthalpy fluxes and the constant gross moist stability. The impact on cloud hydrometeors and microphysical properties is also examined, and it is consistent with the macrophysical picture.

     
    more » « less
  5. Abstract In convective quasi-equilibrium theory, tropical tropospheric temperature perturbations are expected to follow vertical profiles constrained by convection, referred to as A-profiles here, often approximated by perturbations of moist adiabats. Differences between an idealized A-profile based on moist-static energy conservation and temperature perturbations derived from entraining and nonentraining parcel computations are modest under convective conditions—deep convection mostly occurs when the lower troposphere is close to saturation, thus minimizing the impact of entrainment on tropospheric temperature. Simple calculations with pseudoadiabatic perturbations about the observed profile thus provide useful baseline A-profiles. The first EOF mode of tropospheric temperature (TEOF1) from the ERA-Interim and AIRS retrievals below the level of neutral buoyancy (LNB) is compared with these A-profiles. The TEOF1 profiles with high LNB, typically above 400 hPa, yield high vertical spatial correlation (∼0.9) with A-profiles, indicating that tropospheric temperature perturbations tend to be consistent with the quasi-equilibrium assumption where the environment is favorable to deep convection. Lower correlation tends to occur in regions with low climatological LNB, less favorable to deep convection. Excluding temperature profiles with low LNB significantly increases the tropical mean vertical spatial correlation. The temperature perturbations near LNB exhibit negative deviations from the A-profiles—the convective cold-top phenomenon—with greater deviation for higher LNB. In regions with lower correlation, the deviation from A-profile shows an S-like shape beneath 600 hPa, usually accompanied by a drier lower troposphere. These findings are robust across a wide range of time scales from daily to monthly, although the vertical spatial correlation and TEOF1 explained variance tend to decrease on short time scales. 
    more » « less