Abstract INTRODUCTIONAlzheimer's disease (AD) initiates years prior to symptoms, underscoring the importance of early detection. While amyloid accumulation starts early, individuals with substantial amyloid burden may remain cognitively normal, implying that amyloid alone is not sufficient for early risk assessment. METHODSGiven the genetic susceptibility of AD, a multi‐factorial pseudotime approach was proposed to integrate amyloid imaging and genotype data for estimating a risk score. Validation involved association with cognitive decline and survival analysis across risk‐stratified groups, focusing on patients with mild cognitive impairment (MCI). RESULTSOur risk score outperformed amyloid composite standardized uptake value ratio in correlation with cognitive scores. MCI subjects with lower pseudotime risk score showed substantial delayed onset of AD and slower cognitive decline. Moreover, pseudotime risk score demonstrated strong capability in risk stratification within traditionally defined subgroups such as early MCI, apolipoprotein E (APOE) ε4+ MCI,APOEε4– MCI, and amyloid+ MCI. DISCUSSIONOur risk score holds great potential to improve the precision of early risk assessment. HighlightsAccurate early risk assessment is critical for the success of clinical trials.A new risk score was built from integrating amyloid imaging and genetic data.Our risk score demonstrated improved capability in early risk stratification. 
                        more » 
                        « less   
                    This content will become publicly available on April 1, 2026
                            
                            Synergistic reduction in interfacial flexibility of TREM2 R47H and ApoE4 may underlie AD pathology
                        
                    
    
            Abstract BACKGROUNDThe strongest genetic drivers of late‐onset Alzheimer's disease (AD) are apolipoprotein E4 (ApoE4) and TREM2R47H. Despite their critical roles, the mechanisms underlying their interactions remain poorly understood. METHODSWe conducted microsecond‐long molecular dynamics simulations of TREM2‐ApoE complexes, including TREM2R47H, validating our findings through comparison with published experimental data on TREM2‐ApoE binding interactions. RESULTSOur simulations reveal TREM2WTcan sample an “open” CDR2 conformation, challenging the prevailing notion that this conformation is pathogenic. TREM2WTexhibits greater flexibility, accessing diverse CDR2 conformations, while rigidity in TREM2R47H’s CDR2 may explain its reduced ligand‐binding properties. ApoE2 facilitates dynamic reconfiguration of TREM2‐ApoE2 complexes, which is absent with ApoE4. TREM2R47Hand ApoE4 mutually rigidify each other, suppressing interfacial flexibility. DISCUSSIONOur findings suggest mechanisms underlying ApoE2's neuroprotective functions, ApoE4's pathogenicity, and the synergistic effects of ApoE4 and TREM2R47Hin AD. TREM2WT’s flexibility and reconfiguration with ApoE2 may support microglial activation, while rigidity in TREM2R47H‐ApoE4 interactions may drive pathogenic signaling. HighlightsTREM2WTsamples diverse CDR2 conformations, challenging prior assumptions that an “open” CDR2 state is solely pathogenic.ApoE2 promotes dynamic reconfiguration of TREM2‐ApoE2 complexes, preserving TREM2WT's flexibility.ApoE4's hinge forms a unique binding pocket that enhances TREM2 binding.The TREM2R47H‐ApoE4 complex exhibits mutual rigidity, suppressing CDR2 and hinge flexibility. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2022138
- PAR ID:
- 10630702
- Publisher / Repository:
- Pubmed
- Date Published:
- Journal Name:
- Alzheimer's & Dementia
- Volume:
- 21
- Issue:
- 4
- ISSN:
- 1552-5260
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            AbstractIn stroke, the sudden deprivation of oxygen to neurons triggers a profuse release of glutamate that induces anoxic depolarization (AD) and leads to rapid cell death. Importantly, the latency of the glutamate‐driven AD event largely dictates subsequent tissue damage. Although the contribution of synaptic glutamate during ischaemia is well‐studied, the role of tonic (ambient) glutamate has received far less scrutiny. The majority of tonic, non‐synaptic glutamate in the brain is governed by the cystine/glutamate antiporter, system xc−. Employing hippocampal slice electrophysiology, we showed that transgenic mice lacking a functional system xc−display longer latencies to AD and altered depolarizing waves compared to wild‐type mice after total oxygen deprivation. Experiments which pharmacologically inhibited system xc−, as well as those manipulating tonic glutamate levels and those antagonizing glutamate receptors, revealed that the antiporter's putative effect on ambient glutamate precipitates the ischaemic cascade. As such, the current study yields novel insight into the pathogenesis of acute stroke and may direct future therapeutic interventions.image Key pointsIschaemic stroke remains the leading cause of adult disability in the world, but efforts to reduce stroke severity have been plagued by failed translational attempts to mitigate glutamate excitotoxicity.Elucidating the ischaemic cascade, which within minutes leads to irreversible tissue damage induced by anoxic depolarization, must be a principal focus.Data presented here show that tonic, extrasynaptic glutamate supplied by system xc−synergizes with ischaemia‐induced synaptic glutamate release to propagate AD and exacerbate depolarizing waves.Exploiting the role of system xc−and its obligate release of ambient glutamate could, therefore, be a novel therapeutic direction to attenuate the deleterious effects of acute stroke.more » « less
- 
            Background: Apolipoprotein E (APOE) genotypes typically increase risk of amyloid-β deposition and onset of clinical Alzheimer’s disease (AD). However, cognitive assessments in APOE transgenic AD mice have resulted in discord. Objective: Analysis of 31 peer-reviewed AD APOE mouse publications (n = 3,045 mice) uncovered aggregate trends between age, APOE genotype, gender, modulatory treatments, and cognition. Methods: T-tests with Bonferroni correction (significance = p < 0.002) compared age-normalized Morris water maze (MWM) escape latencies in wild type (WT), APOE2 knock-in (KI2), APOE3 knock-in (KI3), APOE4 knock-in (KI4), and APOE knock-out (KO) mice. Positive treatments (t+) to favorably modulate APOE to improve cognition, negative treatments (t–) to perturb etiology and diminish cognition, and untreated (t0) mice were compared. Machine learning with random forest modeling predicted MWM escape latency performance based on 12 features: mouse genotype (WT, KI2, KI3, KI4, KO), modulatory treatment (t+, t–, t0), mouse age, and mouse gender (male = g_m; female = g_f, mixed gender = g_mi). Results: KI3 mice performed significantly better in MWM, but KI4 and KO performed significantly worse than WT. KI2 performed similarly to WT. KI4 performed significantly worse compared to every other genotype. Positive treatments significantly improved cognition in WT, KI4, and KO compared to untreated. Interestingly, negative treatments in KI4 also significantly improved mean MWM escape latency. Random forest modeling resulted in the following feature importance for predicting superior MWM performance: [KI3, age, g_m, KI4, t0, t+, KO, WT, g_mi, t–, g_f, KI2] = [0.270, 0.094, 0.092, 0.088, 0.077, 0.074, 0.069, 0.061, 0.058, 0.054, 0.038, 0.023]. Conclusion: APOE3, age, and male gender was most important for predicting superior mouse cognitive performance.more » « less
- 
            Abstract Sorption ofmyo‐inositol hexakisphosphate (IHP), a common type of organic phosphorus in soils, largely controls its mobility and bioavailability. Research on the interaction between IHP and phyllosilicate minerals such as kaolinite, which is commonly present in highly weathered soils, has often been neglected, probably due to the common assumption that negatively charged phyllosilicate minerals have low sorption capacity and binding affinity to IHP and thus do not play any significant role in its fate. Here, the interaction between IHP and poorly crystallized kaolinite (KGa‐2) was investigated in batch experiments using Zeta (ζ) potential measurement and31P nuclear magnetic resonance (NMR) spectroscopy. The results showed that dissolved Al(III) concentration at the adsorption initiation stage increased with increasing IHP concentration at pH 4.0. From pH 2.5 to 9.0, IHP presented a maximum sorption capacity (50 μmol g−1) at pH 4.0 at 24 hr. With IHP sorption, theζpotential of kaolinite first decreased sharply to a negative value, then gradually increased with resorption of Al(III) released from kaolinite dissolution at acidic pH, and finally approached the original value of the pure kaolinite.31P NMR spectroscopy andζpotential analyses revealed that IHP formed inner‐sphere surface complexes and aluminium phytate precipitated on kaolinite at low pH (2.5 and 4.0), whereas the formation of inner‐sphere surface complexes was the dominant sorption mechanism at pH ≥ 5.5. This study implies that various mechanisms, depending on ambient pH condition, can dominate the IHP sorption onto kaolinite, which impacts the mobility and bioavailability of phosphorus in highly weathered soils. HighlightsIHP promotes the dissolution of kaolinite mainly through the formation of aluminium phytate complex.IHP sorption presents a sharp maximum at pH 4.0.IHP forms inner‐sphere complexes at the surface of kaolinite.Formation of aluminium phytate surface precipitates is favourable at relatively low pH.more » « less
- 
            AbstractPrecise regulation of sarcomeric contraction is essential for normal cardiac function. The heart must generate sufficient force to pump blood throughout the body, but either inadequate or excessive force can lead to dysregulation and disease. Myosin regulatory light chain (RLC) is a thick‐filament protein that binds to the neck of the myosin heavy chain. Post‐translational phosphorylation of RLC (RLC‐P) by myosin light chain kinase is known to influence acto‐myosin interactions, thereby increasing force production and Ca2+‐sensitivity of contraction. Here, we investigated the role of RLC‐P on cardiac structure and function as sarcomere length and [Ca2+] were altered. We found that at low, non‐activating levels of Ca2+, RLC‐P contributed to myosin head disorder, though there were no effects on isometric stress production and viscoelastic stiffness. With increases in sarcomere length and Ca2+‐activation, the structural changes due to RLC‐P become greater, which translates into greater force production, greater viscoelastic stiffness, slowed myosin detachment rates and altered nucleotide handling. Altogether, these data suggest that RLC‐P may alter thick‐filament structure by releasing ordered, off‐state myosin. These more disordered myosin heads are available to bind actin, which could result in greater force production as Ca2+levels increase. However, prolonged cross‐bridge attachment duration due to slower ADP release could delay relaxation long enough to enable cross‐bridge rebinding. Together, this work further elucidates the effects of RLC‐P in regulating muscle function, thereby promoting a better understanding of thick‐filament regulatory contributions to cardiac function in health and disease.image Key pointsMyosin regulatory light chain (RLC) is a thick‐filament protein in the cardiac sarcomere that can be phosphorylated (RLC‐P), and changes in RLC‐P are associated with cardiac dysfunction and disease.This study assesses how RLC‐P alters cardiac muscle structure and function at different sarcomere lengths and calcium concentrations.At low, non‐activating levels of Ca2+, RLC‐P contributed to myofilament disorder, though there were no effects on isometric stress production and viscoelastic stiffness.With increases in sarcomere length and Ca2+‐activation, the structural changes due to RLC‐P become greater, which translates into greater force production, greater viscoelastic stiffness, slower myosin detachment rate and altered cross‐bridge nucleotide handling rates.This work elucidates the role of RLC‐P in regulating muscle function and facilitates understanding of thick‐filament regulatory protein contributions to cardiac function in health and disease.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
