skip to main content


Title: Atomistic understanding of surface wear process of sodium silicate glass in dry versus humid environments
Abstract

Understanding surface reactions of silicate glass under interfacial shear is critical as it can provide physical insights needed for rational design of more durable glasses. Here, we performed reactive molecular dynamics (MD) simulations with ReaxFF potentials to study the mechanochemical wear of sodium silicate glass rubbed with amorphous silica in the absence and presence of interfacial water molecules. The effect of water molecules on the shear‐induced chemical reaction at the sliding interface was investigated. The dependence of wear on the number of interfacial water molecules in ReaxFF‐MD simulations was in reasonable agreement with the experimental data. Confirming this, the ReaxFF‐MD simulation was used to find further details of atomistic reaction dynamics that cannot be obtained from experimental investigations only. The simulation showed that the severe wear in the dry condition is due to the formation of interfacial Sisubstrate–O–Sicounter_surfacebond that convey the interfacial shear stress to the subsurface and the presence of interfacial water reduces the interfacial bridging bond formation. The leachable sodium ions facilitate surface reactions with water‐producing hydroxyl groups and their key role in the hydrolysis reaction is discussed.

 
more » « less
NSF-PAR ID:
10454516
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of the American Ceramic Society
Volume:
103
Issue:
5
ISSN:
0002-7820
Page Range / eLocation ID:
p. 3060-3069
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Infrared (IR) and Raman spectroscopic features of silicate glasses are often interpreted based on the analogy with those of smaller molecules, molecular clusters, or crystalline counterparts; this study tests the accuracy and validity of these widely cited peak assignment schemes by comparing vibrational spectral features with bond parameters of the glass network created by molecular dynamics (MD) simulations. A series of sodium silicate glasses with compositions of [Na2O]x[Al2O3]2[SiO2]98−xwithx = 7, 12, 17, and 22 were synthesized and analyzed with IR and Raman. A silica glass substrate and a crystalline quartz were also analyzed for comparison. Glass structures with the same compositions were generated with MD simulations using three types of potentials: fixed partial charge pairwise (Teter), partial diffuse charge potential (MGFF), and bond order‐based charge transfer potential (ReaxFF). The comparison of simulated and experimental IR spectra showed that, among these three potentials tested, ReaxFF reproduces the concentration dependence of spectral features closest to the experimentally observed trend. Thus, the bond length and angle distributions as well as Si–Qnspecies and ring size distributions of silica and sodium silicate glasses were obtained from ReaxFF‐MD simulations and further compared with the peak assignment or deconvolution schemes—which have been widely used since 1970s and 1980s—(a) correlation between the IR peak position in the Si–O stretch region (1050‐1120 cm−1) and the Si–O–Si bond angle; (b) deconvolution of the Raman bands in the Si–O stretch region with theQnspeciation; and (c) assignment of the Raman bands in the 420‐600 cm−1region to the bending modes of (SiO)nrings with different sizes (typically, n = 3‐6). The comparisons showed that none of these widely used methods is congruent with the bond parameters or structures of silicate glass networks produced via ReaxFF‐MD simulations. This finding invokes that the adequacy of these spectral interpretation methods must be questioned. Alternative interpretations are proposed, which are to be tested independently in future studies.

     
    more » « less
  2. Abstract

    Molecular dynamics simulations show that the expansion of silica glass occurs by the presence of the hydroxyl (SiOH) groups present in the glass as opposed to intact water (H2O) molecules, providing an accurate molecular description of the experimentally observed volume changes in silica glass exposed to water. Using a robust and accurate reactive potential, the simulations show that the expansion is caused by the rupture of siloxane (Si–O–Si) linkages in the glass via reactions with water molecules, forming SiOHs. Such reactions remove smaller rings and form larger rings, with a decrease in the overall number of rings smaller than a prescribed large ring size in comparison to dry glasses. This change in ring structure overcomes the inherently stronger hydrogen bonding in the glasses containing SiOH in comparison to the glasses containing predominantly intact H2O molecules. This stronger H‐bonding of the SiOH also causes a shift to lower frequencies in the high‐frequency OH vibrational spectrum for the silanols, as shown in previous ab‐initio calculations. This introduces a question about assuming the lower frequency part of the high‐frequency peak is only due to intact H2O molecules. A slight decrease in volume occurred in the glasses containing the largest concentration of intact H2O molecules. There is no change in the ring size distribution between the H2O glasses and dry glasses. Rather, the slight decrease in volume in the H2O system is caused by a decrease in siloxane bond angles caused by the formation of H‐bonds between the H2O molecules and the glass O in the siloxane cages surrounding the H2O molecules.

     
    more » « less
  3. null (Ed.)
    The Interface force field (IFF) enables accurate simulations of bulk and interfacial properties of compounds and multiphase materials. However, the simulation of reactions and mechanical properties up to failure remains challenging and expensive. Here we introduce the Reactive Interface Force Field (IFF-R) to analyze bond breaking and failure of complex materials using molecular dynamics simulations. IFF-R uses a Morse potential instead of a harmonic potential as typically employed in molecular dynamics force fields to describe the bond energy, which can render any desired bond reactive by specification of the curve shape of the potential energy and the bond dissociation energy. This facile extension of IFF and other force fields that utilize a harmonic bond energy term allows the description of bond breaking without loss in functionality, accuracy, and speed. The method enables quantitative, on-the-fly computations of bond breaking and stress-strain curves up to failure in any material. We illustrate accurate predictions of mechanical behavior for a variety of material systems, including metals (iron), ceramics (carbon nanotubes), polymers (polyacrylonitrile and cellulose I\b{eta}), and include sample parameters for common bonds based on using experimental and high-level (MP2) quantum mechanical reference data. Computed structures, surface energies, elastic moduli, and tensile strengths are in excellent agreement with available experimental data. Non-reactive properties are shown to be essentially identical to IFF values. Computations are approximately 50 times faster than using ReaxFF and require only a single set of parameters. Compatibility of IFF and IFF-R with biomolecular force fields allows the quantitative analysis of the mechanics of proteins, DNA, and other biological molecules. 
    more » « less
  4. Abstract

    The atomic‐scale cracking mechanism in clay is vital in discovering the cracking mechanism of clay at the continuum scale in that clay is a nanomaterial. In this article, we investigate mechanisms of modes I and II crack propagations in pyrophyllite and Ca‐montmorillonite with water adsorption through reactive molecular dynamics (MD) with a bond‐order force field. Clay water adsorption is considered by adding water molecules to the clay surface. During the equilibration stage, water adsorption could cause bending deformation of the predefined edge crack region. The relatively small orientating angle of water molecules indicates the formation of hydrogen bonds in the crack propagation process. The peak number density of adsorbed water decreases with the increasing strains. The atomistic structure evolution of the crack tip under loading is analyzed to interpret the nanoscale crack propagation mechanism. The numerical results show that the crack tip first gets blunted with a significant increase in the radius of the curvature of the crack tip and a slight change in crack length. The crack tip blunting is studied by tracking the crack tip opening distance and O–Si–O angle in the tetrahedral Si–O cell in modes I and II cracks. We compare bond‐breaking behaviors between Al–O and Si–O. It is found that Si–O bond breaking is primarily responsible for crack propagation. The critical stress intensity factor and critical energy release rate are determined from MD simulation results.

     
    more » « less
  5. Abstract

    Mechanical stress can directly activate chemical reactions by reducing the reaction energy barrier. A possible mechanism of such mechanochemical activation is structural deformation of the reactant species. However, the effect of deformation on the reaction energetics is unclear, especially, for shear stress-driven reactions. Here, we investigated shear stress-driven oligomerization reactions of cyclohexene on silica using a combination of reactive molecular dynamics simulations and ball-on-flat tribometer experiments. Both simulations and experiments captured an exponential increase in reaction yield with shear stress. Elemental analysis of ball-on-flat reaction products revealed the presence of oxygen in the polymers, a trend corroborated by the simulations, highlighting the critical role of surface oxygen atoms in oligomerization reactions. Structural analysis of the reacting molecules in simulations indicated the reactants were deformed just before a reaction occurred. Quantitative evidence of shear-induced deformation was established by comparing bond lengths in cyclohexene molecules in equilibrium and prior to reactions. Nudged elastic band calculations showed that the deformation had a small effect on the transition state energy but notably increased the reactant state energy, ultimately leading to a reduction in the energy barrier. Finally, a quantitative relationship was developed between molecular deformation and energy barrier reduction by mechanical stress.

     
    more » « less