skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Classifier Neural Network Models Predict Relativistic Electron Events at Geosynchronous Orbit Better than Multiple Regression or ARMAX Models
Abstract To find the best method of predicting when daily relativistic electron flux (>2 MeV) will rise at geosynchronous orbit, we compare model predictive success rates (true positive rate or TPR) for multiple regression, ARMAX, logistic regression, a feed‐forward multilayer perceptron (MLP), and a recurrent neural network (RNN) model. We use only those days on which flux could rise, removing days when flux is already high from the data set. We explore three input variable sets: (1) ground‐based data (Kp,Dst, and sunspot number), (2) a full set of easily available solar wind and interplanetary magnetic field parameters (|B|,Bz,V,N,P,Ey,Kp,Dst, and sunspot number, and (3) this full set with the addition of previous day's flux. Despite high validation correlations in the multiple regression and ARMAX predictions, these regression models had low predictive ability (TPR < 45%) and are not recommended for use. The three classifier model types (logistic regression, MLP, and RNN) performed better (TPR: 50.8–74.6%). These rates were increased further if the cost of missing an event was set at 4 times that of predicting an event that did not happen (TPR: 73.1–89.6%). The area under the receiver operating characteristic curves did not, for the most part, differ between the classifier models (logistic, MLP, and RNN), indicating that any of the three could be used to discriminate between events and nonevents, but validation suggests a full RNN model performs best. The addition of previous day's flux as a predictor provided only a slight advantage.  more » « less
Award ID(s):
1651263
PAR ID:
10454535
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
125
Issue:
5
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Many factors influence relativistic outer radiation belt electron fluxes, such as waves in the ultralow frequency (ULF) Pc5, very low frequency (VLF), and electromagnetic ion cyclotron (EMIC) frequency bands, seed electron flux, Dst disturbance levels, substorm occurrence, and solar wind inputs. In this work we compared relativistic electron flux poststorm versus prestorm using three methods of analysis: (1) multiple regression to predict flux values following storms, (2) multiple regression to predict the size and direction of the change in electron flux, and (3) multiple logistic regression to predict only the probability of the flux rising or falling. We determined which is the most predictive model and which factors are most influential. We found that a linear regression predicting the difference in prestorm and poststorm flux (Model 2) results in the highest validation correlations. The logistic regression used in Model 3 had slightly weaker predictive abilities than the other two models but had the most value in providing a prediction of the probability of the electron flux increasing after a storm. Of the variables used (ULF Pc5 and VLF, seed electrons, substorm activity, and EMIC waves), the most influential in the final model were ULF Pc5 waves and the seed electrons. IMF Bz, Dst, and solar wind number density, velocity, and pressure did not improve any of the models, and were deemed unnecessary for effective predictions. 
    more » « less
  2. Abstract We model lower band chorus observations from the DEMETER satellite using daily and hourly autoregressive‐moving average transfer function (ARMAX) equations. ARMAX models can account for serial autocorrelation between observations that are measured close together in time and can be used to predict a response variable based on its past behavior without the need for recent data. Unstable distributions of radiation belt source electrons (tens of keV) and the substorm activity (SMEd from the SuperMAG array) that is thought to inject these electrons were both statistically significant explanatory variables in a daily ARMAX model describing chorus. Predictions from this model correlated well with observations in a hold‐out test data set (validation correlation of 0.675). Source electron flux was most influential when observations came from the same day or the day before the chorus measurement, with effects decaying rapidly over time. Substorms were more influential when they occurred on previous days, presumably due to their injecting source electrons from the plasma sheet. A daily ARMAX model with interplanetary magnetic field (IMF)|B|, IMFBz, and solar wind pressure as inputs instead of those given above was somewhat less predictive of chorus (r=0.611). An hourly ARMAX model with only solar wind and IMF inputs was even less successful, with a validation correlation of 0.502. 
    more » « less
  3. Abstract Regression models (LEEMYR: Low Energy Electron MLT geosYnchronous orbit Regression) predict hourly 4.1–30 keV electron flux at geostationary orbit (GOES‐16) using solar wind, IMF, and geomagnetic index parameters. Multiplicative interaction and polynomial terms describe synergistic and nonlinear effects. We reduce predictors to an optimal set using stepwise regression, resulting in models with validation comparable to a neural network. Models predict 1, 3, 6, 12, and 24 hr into the future. Validation correlations are as high as 0.78 (4.1 and 11 keV, 1 hr prediction) and Heidke Skill scores (HSS) up to 0.66. A 3 hr ahead prediction is more practical, with slightly lower validation correlation (0.75) and HSS (0.61). The addition of location (MLT: magnetic local time) as a covariate, including multiplicative interaction terms, accounts for location‐dependent flux differences and variation of parameter influence, and allows prediction over the full orbit. Adding a substorm index (SME) provides minimal increase in validation correlation (0.81) showing that other parameters are good proxies for an unavailable real time substorm index. Prediction intervals on individual values provide more accurate assessments of model quality than confidence intervals on the mean values. An inverse N‐weighted least squares approach is impractical as it increases false positive warnings. Physical interpretations are not possible as spurious correlations due to common cycles are not removed. However,SME, Bz, Kp, and Dst are the highest correlates of electron flux, with solar wind velocity, density, and pressure, and IMF magnitude being less well correlated. 
    more » « less
  4. Abstract Electron fluxes (20 eV–2 MeV, RBSP‐A satellite) show reasonable simple correlation with a variety of parameters (solar wind, IMF, substorms, ultralow frequency (ULF) waves, geomagnetic indices) over L‐shells 2–6. Removing correlation‐inflating common cycles and trends (using autoregressive and moving average terms in an ARMAX analysis) results in a 10 times reduction in apparent association between drivers and electron flux, although many are still statistically significant (p < 0.05). Corrected influences are highest in the 20 eV–1 keV and 1–2 MeV electrons, more modest in the midrange (2–40 keV). Solar wind velocity and pressure (but not number density), IMF magnitude (with lower influence ofBz), SME (a substorm measure), a ULF wave index, and geomagnetic indices Kp and SymH all show statistically significant associations with electron flux in the corrected individual ARMAX analyses. We postulate that only pressure, ULF waves, and substorms are direct drivers of electron flux and compare their influences in a combined analysis. SME is the strongest influence of these three, mainly in the eV and MeV electrons. ULF is most influential on the MeV electrons. Pressure shows a smaller positive influence and some indication of either magnetopause shadowing or simply compression on the eV electrons. While strictly predictive models may improve forecasting ability by including indirect driver and proxy parameters, and while these models may be made more parsimonious by choosing not to explicitly model time series behavior, our present analyses include time series variables in order to draw valid conclusions about the physical influences of exogenous parameters. 
    more » « less
  5. This work introduces a machine learning approach for developing Digital Twins (DTs) for DC-DC converters, focusing on in-situ implementation in real-world operational conditions. A system based on a boost converter has been developed in MATLAB Simulink. To mirror real-world scenarios, commercial datasheets along with a range of input parameters, health degradation elements, temperature influence, and random noises have been considered. The study employs Multi-Layer Perceptron (MLP), Convolutional Neural Network (CNN), and Recurrent Neural Network (RNN) for predicting critical circuit responses of the boost converter, including inductor current, output voltage, and efficiency. Investigations show that MLP performs relatively poorly in the presence of noise. The CNN and RNN outperform the MLP under various noise levels, with the RNN exhibiting the best performance. This work advances DTs technology in power electronics, aiming to improve converter system optimization and enable predictive maintenance. 
    more » « less