skip to main content


Title: Thermal adaptations to extreme freeze–thaw cycles in the high tropical Andes
Abstract

Temperature plays a key role in the biology of ectotherms, including anurans, which are found at higher elevations in the tropics than anywhere in the temperate zone. High elevation tropical environments are characterized by extreme daily thermal fluctuation including high daily maxima and nightly freezing. Our study investigated the contrasting operative temperatures of the anuransTelmatobius marmoratusandPleurodema marmoratumin different environmental contexts at the same elevation and biome above 5,200 m.Telmatobius marmoratusavoids extremes of daily temperature fluctuation by utilizing thermally buffered aquatic habitat at all life stages, with minimal operative temperature variation (range: 4.6–8.0°C).Pleurodema marmoratum, in contrast, experienced operative temperatures from −3.5 to 44°C and has one of the widest thermal breadths reported for any tropical frog, from >32°C (critical thermal maximum) to surviving freezing periods of 1 and 6 hr down to −3.0°C. Our findings expand experimental evidence of frost tolerance in amphibians to the widespread Neotropical family Leptodactylidae, the first such evidence of frost tolerance in a tropical amphibian. Our study identifies three strategies (wide thermal tolerance breadth, use of buffered microhabitats, and behavioral thermoregulation), which allow these tropical frogs to withstand the current wide daily thermal fluctuation above 5,000 m.a.s.l. and which may help them adapt to future climatic changes.

Abstract in Spanish is available with online material

 
more » « less
NSF-PAR ID:
10454555
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Biotropica
Volume:
53
Issue:
1
ISSN:
0006-3606
Page Range / eLocation ID:
p. 296-306
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The phase changes of soil water or porous media have a crucial influence on the performance of natural and man-made infrastructures in cold regions. While various methods have been explored to address the impacts of frost-action arising from these phase changes, conventional approaches often rely on chemicals, mechanical techniques, and the reuse of waste materials, which often exhibit certain limitations and environmental concerns. In contrast, certain organisms produce ice-binding proteins (IBPs) or antifreeze proteins (AFPs) to adapt to low temperatures, which can inhibit ice crystal growth by lowering the freezing point and preventing ice crystallization without the need for external intervention. This study explores the potential of three psychrophilic microbes:Sporosarcina psychrophile,Sporosarcina globispora, andPolaromonas hydrogenivorans, to induce non-equilibrium freezing point depression and thermal hysteresis in order to control ice lens growth in frost-susceptible soils. We hypothesize that the AFPs produced by psychrophiles will alter the phase changes of porous media in frost-susceptible soils. The growth profiles of the microbes, the concentration of released proteins in the extracellular solution, and the thermal properties of the protein-mixed soils are monitored at an interval of three days. The controlled soil showed a freezing point of − 4.59 °C and thermal hysteresis of 4.62 °C, whereas protein-treated soil showed a maximum freezing point depression of − 8.54 °C and thermal hysteresis of 7.71 °C. Interestingly, except for the controlled sample, all the protein-treated soil samples were thawed at a negative temperature (minimum recorded at − 0.85 °C). Further analysis showed that the treated soils compared to porous media mixed soil freeze (1.25 °C vs. 0.51 °C) and thaw (2.75 °C vs. 1.72 °C) at extensive temperature gap. This freezing and thawing temperature gap is the temperature difference between the beginning of ice core formation and completed frozen, and the beginning of ice core thawing and completed thawed for the treated soil samples selected from different incubation days. Overall, this study presents a novel bio-mediated approach using psychrophilic microbes to control ice formation in frost-susceptible soils.

     
    more » « less
  2. Abstract

    1. Critical thermal limits represent an important component of an organism's capacity to cope with future temperature changes. Understanding the drivers of variation in these traits may uncover patterns in physiological vulnerability to climate change. Local temperature extremes have emerged as a major driver of thermal limits, although their effects can be mediated by the exploitation of fine‐scale spatial variation in temperature through behavioural thermoregulation.

    2. Here, we investigated thermal limits along elevation gradients within and between two cold‐water frog species (Ascaphusspp.), one with a coastal distribution (A. truei) and the other with a continental range (A. montanus). We quantified thermal limits for over 700 tadpoles, representing multiple populations from each species. We combined local temporal and fine‐scale spatial temperature data to quantify local thermal landscapes (i.e., thermalscapes), including the opportunity for behavioural thermoregulation.

    3. Lower thermal limits for either species could not be reached experimentally without the water freezing, suggesting that cold tolerance is <0.3°C. By contrast, upper thermal limits varied among populations, but this variation only reflected local temperature extremes inA. montanus, perhaps as a consequence of the greater variation in stream temperatures across its range. Lastly, we found minimal fine‐scale spatial variability in temperature, suggesting limited opportunity for behavioural thermoregulation and thus increased vulnerability to warming for all populations.

    4. By quantifying local thermalscapes, we uncovered different trends in the relative vulnerability of populations across elevation for each species. InA. truei, physiological vulnerability decreased with elevation, whereas inA. montanus, all populations were equally physiologically vulnerable. These results highlight how similar environments can differentially shape physiological tolerance and patterns of vulnerability of species, and in turn impact their vulnerability to future warming.

     
    more » « less
  3. Global climate change has profound effects on species, especially those in habitats already altered by humans. Tropical ectotherms are predicted to be at high risk from global temperature increases, particularly those adapted to cooler temperatures at higher altitudes. We investigated how one such species, the water anole (Anolis aquaticus), is affected by temperature stress similar to that of a warming climate across a gradient of human-altered habitats at high elevation sites. We conducted a field survey on thermal traits and measured lizard critical thermal maxima across the sites. From the field survey, we found that (1) lizards from the least disturbed site and (2) operative temperature models of lizards placed in the least disturbed site had lower temperatures than those from sites with histories of human disturbance. Individuals from the least disturbed site also demonstrated greater tolerance to high temperatures than those from the more disturbed sites, in both their critical thermal maxima and the time spent at high temperatures prior to reaching critical thermal maxima. Our results demonstrate within-species variability in responses to high temperatures, depending on habitat type, and provide insight into how tropical reptiles may fare in a warming world. 
    more » « less
  4. Abstract

    Behavioral thermoregulation is an efficient mechanism to buffer the physiological effects of climate change. Thermal ecology studies have traditionally tested how thermal constraints shape thermoregulatory behaviors without accounting for the potential major effects of landscape structure and water availability. Thus, we lack a general understanding of the multifactorial determinants of thermoregulatory behaviors in natural populations. In this study, we quantified the relative contribution of elevation, thermal gradient, moisture gradient, and landscape structure in explaining geographic variation in thermoregulation strategies of a terrestrial ectotherm species. We measured field‐active body temperature, thermal preferences, and operative environmental temperatures to calculate thermoregulation indices, including thermal quality of the habitat and thermoregulation efficiency for a very large sample of common lizards (Zootoca vivipara) from 21 populations over 3 yr across the Massif Central mountain range in France. We used an information‐theoretic approach to compare eight a priori thermo‐hydroregulation hypotheses predicting how behavioral thermoregulation should respond to environmental conditions. Environmental characteristics exerted little influence on thermal preference with the exception that females from habitats with permanent access to water had lower thermal preferences. Field body temperatures and accuracy of thermoregulation were best predicted by the interaction between air temperature and a moisture index. In mesic environments, field body temperature and thermoregulation accuracy increased with air temperature, but they decreased in drier habitats. Thermoregulation efficiency (difference between thermoregulation inaccuracy and the thermal quality of the habitat) was maximized in cooler and more humid environments and was mostly influenced by the thermal quality of the habitat. Our study highlights complex patterns of variation in thermoregulation strategies, which are mostly explained by the interaction between temperature and water availability, independent of the elevation gradient or thermal heterogeneity. Although changes in landscape structure were expected to be the main driver of extinction rate of temperate zone ectotherms with ongoing global change, we conclude that changes in water availability coupled with rising temperatures might have a drastic impact on the population dynamics of some ectotherm species.

     
    more » « less
  5. Abstract

    We report a biophysical mechanism, termed cryocampsis (Greek cryo-, cold, + campsis, bending), that helps northern shrubs bend downward under a snow load. Subfreezing temperatures substantially increase the downward bending of cantilever-loaded branches of these shrubs, while allowing them to recover their summer elevation after thawing and becoming unloaded. This is counterintuitive, because biological materials (including branches that show cryocampsis) generally become stiffer when frozen, so should flex less, rather than more, under a given bending load. Cryocampsis involves straining of the cell walls of a branch’s xylem (wood), and depends upon the branch being hydrated. Among woody species tested, cryocampsis occurs in almost all Arctic, some boreal, only a few temperate and Mediterranean, and no tropical woody species that we have tested. It helps cold-winter climate shrubs reversibly get, and stay, below the snow surface, sheltering them from winter weather and predation hazards. This should be advantageous, because Arctic shrub bud winter mortality significantly increases if their shoots are forcibly kept above the snow surface. Our observations reveal a physically surprising behavior of biological materials at subfreezing temperatures, and a previously unrecognized mechanism of woody plant adaptation to cold-winter climates. We suggest that cryocampsis’ mechanism involves the movement of water between cell wall matrix polymers and cell lumens during freezing, analogous to that of frost-heave in soils or rocks.

     
    more » « less