skip to main content


Title: The role of hydrothermal fluids in sedimentation in saline alkaline lakes: Evidence from Nasikie Engida, Kenya Rift Valley
Abstract

Saline alkaline lakes that precipitate sodium carbonate evaporites are most common in volcanic terrains in semi‐arid environments. Processes that lead to trona precipitation are poorly understood compared to those in sulphate‐dominated and chloride‐dominated lake brines. Nasikie Engida (Little Magadi) in the southern Kenya Rift shows the initial stages of soda evaporite formation. This small shallow (<2 m deep; 7 km long) lake is recharged by alkaline hot springs and seasonal runoff but unlike neighbouring Lake Magadi is perennial. This study aims to understand modern sedimentary and geochemical processes in Nasikie Engida and to assess the importance of geothermal fluids in evaporite formation. Perennial hot‐spring inflow waters along the northern shoreline evaporate and become saturated with respect to nahcolite and trona, which precipitate in the southern part of the lake, up to 6 km from the hot springs. Nahcolite (NaHCO3) forms bladed crystals that nucleate on the lake floor. Trona (Na2CO3·NaHCO3·2H2O) precipitates from more concentrated brines as rafts and as bottom‐nucleated shrubs of acicular crystals that coalesce laterally to form bedded trona. Many processes modify the fluid composition as it evolves. Silica is removed as gels and by early diagenetic reactions and diatoms. Sulphate is depleted by bacterial reduction. Potassium and chloride, of moderate concentration, remain conservative in the brine. Clastic sedimentation is relatively minor because of the predominant hydrothermal inflow. Nahcolite precipitates when and wherepCO2is high, notably near sublacustrine spring discharge. Results from Nasikie Engida show that hot spring discharge has maintained the lake for at least 2 kyr, and that the evaporite formation is strongly influenced by local discharge of carbon dioxide. Brine evolution and evaporite deposition at Nasikie Engida help to explain conditions under which ancient sodium carbonate evaporites formed, including those in other East African rift basins, the Eocene Green River Formation (western USA), and elsewhere.

 
more » « less
NSF-PAR ID:
10454573
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Sedimentology
Volume:
68
Issue:
1
ISSN:
0037-0746
Page Range / eLocation ID:
p. 108-134
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Searles Lake, California, was a saline-alkaline lake that deposited >25 non-clastic minerals that record the history of lake chemistry and regional climate. Here, the mineralogy and petrography from the late Pleistocene/Holocene (32−6 ka) portion of a new Searles Lake sediment core, SLAPP-SRLS17, is combined with thermodynamic models to determine the geochemical and paleoclimate conditions required to produce the observed mineral phases, sequences, and abundances. The models reveal that the primary precipitates formed by open system (i.e., fractional crystallization), whereas the early diagenetic salts formed by salinity-driven closed system back-reactions (i.e., equilibrium crystallization). For core SLAPP-SRLS17, the defining evaporite sequence trona → burkeite → halite indicates brine temperatures within a 20−29 °C range, implying thermally insulating lake depths >10 m during salt deposition. Evaporite phases reflect lake water pCO2 consistent with contemporaneous atmospheric values of ∼190−270 ppmv. However, anomalous layers of nahcolite and thenardite indicate pulses of pCO2 > 700−800 ppm, likely due to variable CO2 injection along faults. Core sedimentology indicates that Searles Lake was continuously perennial between 32 ka and 6 ka such that evaporite units reflect periods of net evaporation but never complete desiccation. Model simulations indicate that cycles of partial evaporation and dilution strongly influence long-term brine evolution by amassing certain species, particularly Cl−, that only occur in late-stage soluble salts. A model incorporating long-term brine dynamics corrects previous mass-balance anomalies and shows that the late Pleistocene/Holocene (32−6 ka) salts are partially inherited from the solutes introduced into earlier lakes going back at least 150 ka. 
    more » « less
  2. null (Ed.)
    Abstract Halite precipitates in the Dead Sea during winter but re-dissolves above the thermocline upon summer warming, “focusing” halite deposition below the thermocline (Sirota et al., 2016, 2017, 2018). Here we develop an “evaporite focusing” model for evaporites (nahcolite + halite) preserved in a restricted area of the Eocene Green River Formation in the Piceance Creek Basin of Colorado, USA. Nahcolite solubility is dependent on partial pressure of carbon dioxide (pCO2) as well as temperature (T), so these models covary with both T and pCO2. In the lake that filled the Piceance Creek Basin, halite, nahcolite or mixtures of both could have precipitated during winter cooling, depending on the CO2 content in different parts of the lake. Preservation of these minerals occurs below the thermocline (>∼25 m) in deeper portions of the basin. Our modeling addresses both: (1) the restriction of evaporites in the Piceance Creek Basin to the center of the basin without recourse to later dissolution and (2) the variable mineralogy of the evaporites without recourse to changes in lake water chemistry. T from 20 to 30 °C and pCO2 between 1800 and 2800 ppm are reasonable estimates for the conditions in the Piceance Creek Basin paleolake. Other evaporites occur in the center of basins but do not extend out to the edges of the basin. Evaporite focusing caused by summer-winter T changes in the solubility of the minerals should be considered for such deposits and variable pCO2 within the evaporating brines also needs to be considered if pCO2 sensitive minerals are found. 
    more » « less
  3. Mineralogy, petrographic textures, and sedimentary structures from the world’s largest trona deposit, the Wilkins Peak Member (WPM) of the early Eocene Green River Formation (GRF), Bridger subbasin, Wyoming, provide key data about depositional conditions and paleoenvironments. The 250 m-long WPM interval in the Solvay S-34-1 drill core analyzed in this study contains a detailed record of sedimentation in the Bridger subbasin at the deepest area of a hydrologically-closed basin during peak Cenozoic atmospheric CO2 concentrations. Large accumulations of trona (Na3(HCO3)(CO3)·2H2O), shortite (Na2Ca2(CO3)3), northupite (Na3Mg (CO3)2Cl), and halite (NaCl; now replaced by trona), occur in the lower half of the WPM. Modern saline lake environments such as Lake Magadi, Kenya, and the Dead Sea, Israel-Jordan, are useful analogues for interpreting paleolake conditions associated with evaporite deposition in the Solvay S-34-1 core. Solvay saline lake deposits are organized into meter-scale shallowing-upward successions, beginning with (1) oil shale overlain by (2) trona, in places interbedded with oil shale, followed by (3) peloidal dolomite grainstone and/or silty dolomitic mudstone, and (4) massive mudstone with disruption features or desiccation cracks, and/or siliciclastic sandstone with ripple cross-stratification. Based on observations of modern hypersaline lake environments, WPM evaporite deposition at the basin depocenter is interpreted to be controlled by inflow water composition and volume, evaporative concentration, and seasonally-driven lake temperature fluctuations, resulting in recurrent patterns in evaporite mineralogies and textures. 
    more » « less
  4. The Green River Formation of Wyoming, USA, is host to the world’s largest known lacustrine sodium carbonate deposits, which accumulated in a closed basin during the early Eocene greenhouse. Alkaline brines are hypothesized to have been delivered to ancient Gosiute Lake by the Aspen paleoriver that flowed from the Colorado Mineral Belt. To precisely trace fluvial provenance in the resulting deposits, we conducted X-ray fluorescence analyses and petrographic studies across a suite of well-dated sandstone marker beds of the Wilkins Peak Member of the Green River Formation. Principal component analysis reveals strong correlation among elemental abundances, grain composition, and sedimentary lithofacies. To isolate a detrital signal, elements least affected by authigenic minerals, weathering, and other processes were included in a principal component analysis, the results of which are consistent with petrographic sandstone modes and detrital zircon chronofacies of the basin. Sandstone marker beds formed during eccentricity-paced lacustrine lowstands and record the migration of fluvial distributary channel networks from multiple catchments around a migrating depocenter, including two major paleorivers. The depositional topography of these convergent fluvial fans would have inversely defined bathymetric lows during subsequent phases of lacustrine inundation, locations where trona could accumulate below a thermocline. Provenance mapping verifies fluvial connectivity to the Aspen paleoriver and to sources of alkalinity in the Colorado Mineral Belt across Wilkins Peak Member deposition, and shows that the greatest volumes of sediment were delivered from the Aspen paleoriver during deposition of marker beds A, B, D, and I, each of which were deposited coincident with prominent “hyperthermal” isotopic excursions documented in oceanic cores. 
    more » « less
  5. Abstract

    Documenting anaerobic microbial metabolisms in hypersaline perennially ice‐covered lakes in Antarctica further refines the environmental limits to life and may reveal rare biogeochemical mechanisms and/or novel microbial catalysts of elemental cycling. We assessed rates of sulfate reduction, methanogenesis, and anaerobic oxidation of methane using radiotracers and generated 16S rRNA gene libraries from the microbial communities inhabiting the deep calcium‐chloride‐rich brine and sediments of Lake Vanda, McMurdo Dry Valleys, Antarctica. Sulfate reduction rates were observed in surface sediments but not in the brine overlying the sediments. Methane formation through the methylotrophic, acetoclastic, and hydrogenotrophic pathways was quantified using14C‐labeled methylamine, acetate, and CO2, respectively, and methanogenesis was detected in both the brine and the sediments. Hydrogenotrophic methanogenesis rates were the highest of all substrates tested in the sediments, while methylotrophic methanogenesis was highest in the brines. Anaerobic oxidation of methane was below the limit of detection in both the brines and sediments. The major taxa ofBacteriaandArchaeadetected were most similar to organisms previously observed in hypersaline environments and included examples related to known sulfate‐reducing bacteria other thanDeltaproteobacteria(surprisingly, sulfate‐reducingDeltaproteobacteriawere not observed in this study), and both methanogenic and methanotrophicArchaea. These data indicate an active microbial community in the anoxic brine of Lake Vanda that while similar in terms of community structure and metabolism to other brine habitats, is uniquely evolved to survive in this extreme environment.

     
    more » « less