skip to main content


Title: Selenium doping induced two antiferromagnetic transitions in thiospinel compounds CuCo 2 S 4‐ x Se x (0 ≤  x  ≤ 0.8)
Abstract

A series of copper thiospinel compounds, CuCo2S4‐xSex(x = 0, 0.2, 0.4, 0.6, 0.8), have been successfully synthesized by solid‐state reaction and their structure and magnetic properties have been studied. The Rietveld refinements of X‐ray diffractions indicate that both the lattice constants and the nearest‐neighbor Cu‐Cu distances increase with increasing selenium doping. A weakly antiferromagnetic transition occurring at about 4 K is observed in CuCo2S4. Two antiferromagnetic transitions at about 3.5 K and 6 K are observed in selenium‐doped samples, which suggest that the exchange couplings associated with Cu‐S(Se)‐Cu and Cu‐Se(S)‐Cu, respectively, are responsible for the two antiferromagnetic transitions. Detailed analysis of the experimental results further indicates that the nearest‐neighbor molecular field coefficient is comparable to the next‐neighbor molecular field coefficient. We propose a reasonable model to explain this phenomenon.

 
more » « less
PAR ID:
10454596
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of the American Ceramic Society
Volume:
104
Issue:
4
ISSN:
0002-7820
Page Range / eLocation ID:
p. 1806-1813
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In recent years, Cu2ZnSn(S,Se)4(CZTSSe) materials have enabled important progress in associated thin‐film photovoltaic (PV) technology, while avoiding scarce and/or toxic metals; however, cationic disorder and associated band tailing fundamentally limit device performance. Cu2BaSnS4(CBTS) has recently been proposed as a prospective alternative large bandgap (~2 eV), environmentally friendly PV material, with ~2% power conversion efficiency (PCE) already demonstrated in corresponding devices. In this study, a two‐step process (i.e., precursor sputter deposition followed by successive sulfurization/selenization) yields high‐quality nominally pinhole‐free films with large (>1 µm) grains of selenium‐incorporated (x= 3) Cu2BaSnS4−xSex(CBTSSe) for high‐efficiency PV devices. By incorporating Se in the sulfide film, absorber layers with 1.55 eV bandgap, ideal for single‐junction PV, have been achieved within the CBTSSe trigonal structural family. The abrupt transition in quantum efficiency data for wavelengths above the absorption edge, coupled with a strong sharp photoluminescence feature, confirms the relative absence of band tailing in CBTSSe compared to CZTSSe. For the first time, by combining bandgap tuning with an air‐annealing step, a CBTSSe‐based PV device with 5.2% PCE (total area 0.425 cm2) is reported, >2.5× better than the previous champion pure sulfide device. These results suggest substantial promise for the emerging Se‐rich Cu2BaSnS4–xSexfamily for high‐efficiency and earth‐abundant PV.

     
    more » « less
  2.  
    more » « less
  3. Alkali halide postdeposition treatments (PDTs) have become a key tool to maximize efficiency in Cu(InxGa1−x)Se2(CIGS) photovoltaics. RbF PDTs have emerged as an alternative to the more common Na‐ and K‐based techniques. This study utilizes temperature‐dependent current–voltage (JVT) measurements to study a unique RbF PDT performed in a S atmosphere. The samples are measured before and after 6 months in a desiccator to study device stability. Both samples contain Na and K which diffuse from the soda–lime glass substrate. A reference sample and a RbF + S PDT sample both show the development of a rear contact barrier after aging. The contact barrier is higher for the RbF + S PDT sample, leading to decreased current in forward bias. Series resistance is also higher in the RbF + S PDT device which leads to lower fill factor. However, after aging the reference sample has a larger decrease in open‐circuit voltage (VOC). Ideality factor measurements suggest Shockley–Read–Hall recombination dominates both samples.VOCversus temperature and a temperature‐dependent activation energy model are used to calculate diode activation energies for each sample condition. Both techniques produce similar values that indicate recombination primarily occurs within the bulk absorber.

     
    more » « less
  4. Abstract

    The quinary members in the solid solution Hf2Fe1−δRu5−xIrx+δB2(x=1–4, VE=63–66) have been investigated experimentally and computationally. They were synthesized via arc‐melting and analyzed by EDX and X‐ray diffraction. Density functional theory (DFT) calculations predicted a preference for magnetic ordering in all members, but with a strong competition between ferro‐ and antiferromagnetism arising from interchain Fe−Fe interactions. The spin exchange and magnetic anisotropy energies predicted the lowest magnetic hardness forx=1 and 3 and the highest forx=2. Magnetization measurements confirm the DFT predictions and demonstrate that the antiferromagnetic ordering (TN=55–70 K) found at low magnetic fields changed to ferromagnetic (TC=150–750 K) at higher fields, suggesting metamagnetic behavior for all samples. As predicted, Hf2FeRu3Ir2B2has the highest intrinsic coercivity (Hc=74 kA/m) reported to date for Ti3Co5B2‐type phases. Furthermore, all coercivities outperform that of ferromagnetic Hf2FeIr5B2, indicating the importance of AFM interactions in enhancing magnetic anisotropy in these materials. Importantly, two members (x=1 and 4) maintain intrinsic coercivities in the semi‐hard range at room temperature. This study opens an avenue for controlling magnetic hardness by modulating antagonistic AFM and FM interactions in low‐dimensional rare‐earth‐free magnetic materials.

     
    more » « less
  5. Abstract

    Synthesizing solids in molten fluxes enables the rapid diffusion of soluble species at temperatures lower than in solid‐state reactions, leading to crystal formation of kinetically stable compounds. In this study, we demonstrate the effectiveness of mixed hydroxide and halide fluxes in synthesizing complex Sr/Ag/Se in mixed LiOH/LiCl. We have accessed a series of two‐dimensional Sr(Ag1−xLix)2Se2layered phases. With increased LiOH/LiCl ratio or reaction temperature, Li partially substituted Ag to form solid solutions of Sr(Ag1−xLix)2Se2withxup to 0.45. In addition, a new type of intergrowth compound [Sr3Se2][(Ag1−xLix)2Se2] was synthesized upon further reaction of Sr(Ag1−xLix)2Se2with SrSe. Both Sr(Ag1−xLix)2Se2and [Sr3Se2][(Ag1−xLix)2Se2] exhibit a direct band gap, which increases with increasing Li substitution (x). Therefore, the band gap of Sr(Ag1−xLix)2Se2can be precisely tuned via fine‐tuningxthat is controlled by only the flux ratio and temperature.

     
    more » « less