In recent years, Cu2ZnSn(S,Se)4(CZTSSe) materials have enabled important progress in associated thin‐film photovoltaic (PV) technology, while avoiding scarce and/or toxic metals; however, cationic disorder and associated band tailing fundamentally limit device performance. Cu2BaSnS4(CBTS) has recently been proposed as a prospective alternative large bandgap (~2 eV), environmentally friendly PV material, with ~2% power conversion efficiency (PCE) already demonstrated in corresponding devices. In this study, a two‐step process (i.e., precursor sputter deposition followed by successive sulfurization/selenization) yields high‐quality nominally pinhole‐free films with large (>1 µm) grains of selenium‐incorporated (
A series of copper thiospinel compounds, CuCo2S4‐
- PAR ID:
- 10454596
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Journal of the American Ceramic Society
- Volume:
- 104
- Issue:
- 4
- ISSN:
- 0002-7820
- Page Range / eLocation ID:
- p. 1806-1813
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
x = 3) Cu2BaSnS4−x Sex (CBTSSe) for high‐efficiency PV devices. By incorporating Se in the sulfide film, absorber layers with 1.55 eV bandgap, ideal for single‐junction PV, have been achieved within the CBTSSe trigonal structural family. The abrupt transition in quantum efficiency data for wavelengths above the absorption edge, coupled with a strong sharp photoluminescence feature, confirms the relative absence of band tailing in CBTSSe compared to CZTSSe. For the first time, by combining bandgap tuning with an air‐annealing step, a CBTSSe‐based PV device with 5.2% PCE (total area 0.425 cm2) is reported, >2.5× better than the previous champion pure sulfide device. These results suggest substantial promise for the emerging Se‐rich Cu2BaSnS4–x Sex family for high‐efficiency and earth‐abundant PV. -
Trigonal Cu2BaGe1−
x Snx Se4(CBGTSe) has recently gained interest as a potential photovoltaic absorber to target mitigation of antisite defect formation in Cu2ZnSn(S,Se)4. This study examines partial substitution of Cu by Ag as a potential approach to tune the properties of Ag‐incorporated CBGTSe in the following aspects: 1) phase stability and crystal structure as a function of Ag content; 2) film morphology and grain structure; 3) charge carrier properties; 4) band positions; and 5) charge carrier kinetics and recombination. Up to 20% of Cu can be substituted by Ag in CBGTSe, while above 20% a phase mixture appears. Increasing Ag content induces larger average grain size and reduced hole carrier densities. In contrast, photoelectron spectroscopy and photoluminescence measurements reveal negligible impact of Ag substitution on ionization potential (≈5.4 eV) and electron affinity (≈3.7 eV). Also, Ag content offers negligible impact on carrier lifetimes (few ns). Consistent with these fundamental properties, solar cells based on two different Ag/(Ag + Cu) ratios (≈0% and ≈20%) show comparable power conversion efficiencies (≈2.7–2.8%). These results indicate that CBGTSe films and solar cells may be less sensitive to Ag substitution compared to Cu2ZnSn(S,Se)4, at least at the current level of absorber and device optimization. -
Alkali halide postdeposition treatments (PDTs) have become a key tool to maximize efficiency in Cu(In
x Ga1−x )Se2(CIGS) photovoltaics. RbF PDTs have emerged as an alternative to the more common Na‐ and K‐based techniques. This study utilizes temperature‐dependent current–voltage (JVT ) measurements to study a unique RbF PDT performed in a S atmosphere. The samples are measured before and after 6 months in a desiccator to study device stability. Both samples contain Na and K which diffuse from the soda–lime glass substrate. A reference sample and a RbF + S PDT sample both show the development of a rear contact barrier after aging. The contact barrier is higher for the RbF + S PDT sample, leading to decreased current in forward bias. Series resistance is also higher in the RbF + S PDT device which leads to lower fill factor. However, after aging the reference sample has a larger decrease in open‐circuit voltage (V OC). Ideality factor measurements suggest Shockley–Read–Hall recombination dominates both samples.V OCversus temperature and a temperature‐dependent activation energy model are used to calculate diode activation energies for each sample condition. Both techniques produce similar values that indicate recombination primarily occurs within the bulk absorber. -
Abstract The quinary members in the solid solution Hf2Fe1−
δ Ru5−x Irx +δ B2(x =1–4, VE=63–66) have been investigated experimentally and computationally. They were synthesized via arc‐melting and analyzed by EDX and X‐ray diffraction. Density functional theory (DFT) calculations predicted a preference for magnetic ordering in all members, but with a strong competition between ferro‐ and antiferromagnetism arising from interchain Fe−Fe interactions. The spin exchange and magnetic anisotropy energies predicted the lowest magnetic hardness forx =1 and 3 and the highest forx =2. Magnetization measurements confirm the DFT predictions and demonstrate that the antiferromagnetic ordering (T N=55–70 K) found at low magnetic fields changed to ferromagnetic (T C=150–750 K) at higher fields, suggesting metamagnetic behavior for all samples. As predicted, Hf2FeRu3Ir2B2has the highest intrinsic coercivity (Hc =74 kA/m) reported to date for Ti3Co5B2‐type phases. Furthermore, all coercivities outperform that of ferromagnetic Hf2FeIr5B2, indicating the importance of AFM interactions in enhancing magnetic anisotropy in these materials. Importantly, two members (x =1 and 4) maintain intrinsic coercivities in the semi‐hard range at room temperature. This study opens an avenue for controlling magnetic hardness by modulating antagonistic AFM and FM interactions in low‐dimensional rare‐earth‐free magnetic materials. -
Abstract Synthesizing solids in molten fluxes enables the rapid diffusion of soluble species at temperatures lower than in solid‐state reactions, leading to crystal formation of kinetically stable compounds. In this study, we demonstrate the effectiveness of mixed hydroxide and halide fluxes in synthesizing complex Sr/Ag/Se in mixed LiOH/LiCl. We have accessed a series of two‐dimensional Sr(Ag1−
x Lix )2Se2layered phases. With increased LiOH/LiCl ratio or reaction temperature, Li partially substituted Ag to form solid solutions of Sr(Ag1−x Lix )2Se2withx up to 0.45. In addition, a new type of intergrowth compound [Sr3Se2][(Ag1−x Lix )2Se2] was synthesized upon further reaction of Sr(Ag1−x Lix )2Se2with SrSe. Both Sr(Ag1−x Lix )2Se2and [Sr3Se2][(Ag1−x Lix )2Se2] exhibit a direct band gap, which increases with increasing Li substitution (x ). Therefore, the band gap of Sr(Ag1−x Lix )2Se2can be precisely tuned via fine‐tuningx that is controlled by only the flux ratio and temperature.