skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Game‐based activities targeting visual literacy skills to increase understanding of biomolecule structure and function concepts in undergraduate biochemistry
Abstract Introductory biochemistry courses are often challenging for students because they require the integration of chemistry, biology, physics, math, and physiology knowledge and frameworks to understand and apply a large body of knowledge. This can be complicated by students' persistent misconceptions of fundamental concepts and lack of fluency with the extensive visual and symbolic literacy used in biochemistry. Card sorting tasks and game‐based activities have been used to reveal insights into how students are assimilating, organizing, and structuring disciplinary knowledge, and how they are progressing along a continuum from disciplinary novice to expert. In this study, game‐based activities and card sorting tasks were used to promote and evaluate students' understanding of fundamental structure–function relationships in biochemistry. Our results suggest that while many markers of expertise increased for both the control and intervention groups over the course of the semester, students involved in the intervention activities tended to move further towards expert‐like sorting. This indicates that intentional visual literacy game‐based activities have the ability to build underdeveloped skills in undergraduate students.  more » « less
Award ID(s):
1725940
PAR ID:
10454612
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Biochemistry and Molecular Biology Education
Volume:
49
Issue:
1
ISSN:
1470-8175
Page Range / eLocation ID:
p. 94-107
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The promotion of global sustainability within environmental science courses requires a paradigm switch from knowledge-based teaching to teaching that stimulates higher-order cognitive skills. Non-major undergraduate science courses, such as environmental science, promote critical thinking in students in order to improve the uptake of scientific information and develop the rational decision making used to make more informed decisions. Science, engineering, technology and mathematics (STEM) courses rely extensively on visuals in lectures, readings and homework to improve knowledge. However, undergraduate students do not automatically acquire visual literacy and a lack of intervention from instructors could be limiting academic success. In this study, a visual literacy intervention was developed and tested in the face-to-face (FTF) and online sections of an undergraduate non-major Introduction to Environmental Science course. The intervention was designed to test and improve visual literacy at three levels: (1) elementary—identifying values; (2) intermediate—identifying trends; and (3) advanced—using the data to make projections or conclusions. Students demonstrated a significant difference in their ability to answer elementary and advanced visual literacy questions in both course sections in the pre-test and post-test. Students in the face-to-face course had significantly higher exam scores and higher median assessment scores compared to sections without a visual literacy intervention. The online section did not show significant improvements in visual literacy or academic success due to a lack of reinforcement of visual literacy following the initial intervention. The visual literacy intervention shows promising results in improving student academic success and should be considered for implementation in other general education STEM courses. 
    more » « less
  2. For a decade, BioMolViz has been developing tools to improve visual literacy instruction. In collaboration with the biochemistry and molecular biology (BMB) education community, our group authored a Biomolecular Visualization Framework to assess visual literacy skills and used the framework’s learning objectives in the backward design of assessments. Our validation process, which includes iterative revision by our working group of faculty, expert panel review, and large-scale classroom testing, has produced a subset of validated assessments which are available in our online repository, the BioMolViz Library. Nearly 200 assessments are now moving through the earlier phases of our validation process. With an eye always on inclusivity, we used our large-scale field testing data to examine performance trends. Upon observing some differences in performance that correlated with gender and race, we organized semi-structured interviews with small groups of undergraduate students to further evaluate our assessments. Disaggregating students into groups by gender, we asked students to share initial impressions and engage in collaborative reflection on their problem solving strategies. As we thematically code our interview transcripts, which include male and female groups from three U.S.-based institutions, we seek to further improve the clarity of our assessments, while exploring approaches to problem solving that may uncover demographic-related differences and make visual literacy more inclusive for all learners. 
    more » « less
  3. In the last two decades, research experiences for pre-college students have gone from the exception of a typical experience of a high school student, to the norm. Often, these research experiences include distinct disciplinary literacy outputs that mimic those of professionals. And while much attention has been paid to supporting students in scientific writing, other disciplinary literacy practices, such as peer-review and publication, are often part of the hidden-curriculum of science research, thus excluding students from fully understanding ways in which scientific knowledge is constructed, refined, and disseminated (Authors, 2022). As more students participate in research experiences and the dissemination of their work, it is important to understand how mentors support the development of disciplinary literacies, including those that are deemed “professional”. To this end, we used a mixed-methods study of interviews and surveys to examine the experience and conceptions of the mentors who guided precollege students through the writing and publication of their scientific research projects. Using the construct of cognitive apprenticeship to evaluate our findings, we find that although mentors highly value peer-review and publication within science, they are not intentional about bringing these practices to the forefront of the research process for their student. Additionally, mentors report a range of involvement level in guiding students through the publication process. Our findings suggest that more work is needed to help reveal professional disciplinary literacy practices to students. mentors could benefit from resources to help them more intentionally involve students in such disciplinary literacy practices. 
    more » « less
  4. This methods paper describes the application of and insights gained from using aspects of an emerging methodology, agile ethnography, to study engineers working in practice. Research has suggested that there is a misalignment between what is taught in engineering school and the types of work that engineers do in practice [1]. Little is known about the types of engineering work that are conducted in practice [2], [3]. In order to best prepare engineering graduates to meet the demands of the engineering workforce, students should be taught the types of knowledge and problem-solving strategies that are commonly used by practicing engineers. By teaching students the problem-solving strategies that are used by their professional counterparts, the gap between what students are taught in school and what is expected of them in the workplace may be lessened. The purpose of this paper is to describe how agile ethnography [4], [5] was successfully used in our research project to examine workplace literacy practices and habits of mind employed by eight engineers in their workplaces over a period of three years. The overarching purpose of the project was to develop models of disciplinary literacy instruction [6] and habits of mind [7] in engineering, both of which are potential methods for teaching students the knowledge, skills, and strategies that may prepare them for an engineering career. Disciplinary literacy instruction teaches students the ways that practitioners use literacy practices when reading, writing, interpreting, and evaluating discipline-specific information [8]. Habits of mind are the intelligent behaviors that guide how professionals respond when faced with situations of uncertainty [9]. By understanding how engineers use disciplinary literacy practices and habits of mind in the workplace, models for student instruction can be developed. These instructional practices can be used to support students’ use of authentic engineering practices and ways of thinking that will support them in the classroom and in their future workplaces. Findings about the disciplinary practices and habits of mind of the eight engineers are presented in previous publications by the authors (e.g., [10]–[12]). 
    more » « less
  5. Although prior research has highlighted the significance of representations for mathematical learning, there is still a lack of research on how students use multimodal external representations (MERs) to solve mathematical tasks in digital game-based learning (DGBL) environments. This exploratory study was to examine the salient patterns problem solvers demonstrated using MERs when they engaged in a single-player, three-dimensional architecture game that requires the acquisition and application of math knowledge and thinking in game-based context problem solving. We recorded and systematically coded the behaviors of using MERs demonstrated by 20 university students during 1.5 hours of gameplay. We conducted both cluster and sequential analyses with a total of 2654 encoded behaviors. The study indicated that the maneuverable visual-spatial representation was most frequently used in the selected architecture game. All of the participants performed a high level of representational transformations, including both treatment and conversion transformations. However, compared to the students in the second cluster who were mostly non-game players, students in the first cluster (composed of mainly experienced video game players) displayed a higher frequency of interacting with various MERs and a more cautious and optimized reflective problem-solving process. 
    more » « less