skip to main content


Title: Patterns of Using Multimodal External Representations in Digital Game-Based Learning
Although prior research has highlighted the significance of representations for mathematical learning, there is still a lack of research on how students use multimodal external representations (MERs) to solve mathematical tasks in digital game-based learning (DGBL) environments. This exploratory study was to examine the salient patterns problem solvers demonstrated using MERs when they engaged in a single-player, three-dimensional architecture game that requires the acquisition and application of math knowledge and thinking in game-based context problem solving. We recorded and systematically coded the behaviors of using MERs demonstrated by 20 university students during 1.5 hours of gameplay. We conducted both cluster and sequential analyses with a total of 2654 encoded behaviors. The study indicated that the maneuverable visual-spatial representation was most frequently used in the selected architecture game. All of the participants performed a high level of representational transformations, including both treatment and conversion transformations. However, compared to the students in the second cluster who were mostly non-game players, students in the first cluster (composed of mainly experienced video game players) displayed a higher frequency of interacting with various MERs and a more cautious and optimized reflective problem-solving process.  more » « less
Award ID(s):
1720533
NSF-PAR ID:
10324814
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Educational Computing Research
ISSN:
0735-6331
Page Range / eLocation ID:
073563312210877
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background. Middle school students’ math anxiety and low engagement have been major issues in math education. In order to reduce their anxiety and support their math learning, game-based learning (GBL) has been implemented. GBL research has underscored the role of social dynamics to facilitate a qualitative understanding of students’ knowledge. Whereas students’ peer interactions have been deemed a social dynamic, the relationships among peer interaction, task efficiency, and learning engagement were not well understood in previous empirical studies.

    Method. This mixed-method research implemented E-Rebuild, which is a 3D architecture game designed to promote students’ math problem-solving skills. We collected a total of 102 50-minutes gameplay sessions performed by 32 middle school students. Using video-captured and screen-recorded gameplaying sessions, we implemented behavior observations to measure students’ peer interaction efficiency, task efficiency, and learning engagement. We used association analyses, sequential analysis, and thematic analysis to explain how peer interaction promoted students’ task efficiency and learning engagement.

    Results. Students’ peer interactions were negatively related to task efficiency and learning engagement. There were also different gameplay patterns by students’ learning/task-relevant peer-interaction efficiency (PIE) level. Students in the low PIE group tended to progress through game tasks more efficiently than those in the high PIE group. The results of qualitative thematic analysis suggested that the students in the low PIE group showed more reflections on game-based mathematical problem solving, whereas those with high PIE experienced distractions during gameplay.

    Discussion. This study confirmed that students’ peer interactions without purposeful and knowledge-constructive collaborations led to their low task efficiency, as well as low learning engagement. The study finding shows further design implications: (1) providing in-game prompts to stimulate students’ math-related discussions and (2) developing collaboration contexts that legitimize students’ interpersonal knowledge exchanges with peers.

     
    more » « less
  2. Abstract Background

    Game‐based learning can frame problem‐solving as a sense‐making experience with domain‐specific tasks for school students. However, multiple challenges arise when trying to support learners in such a complex, problem‐oriented learning environment.

    Objectives and Methods

    With an architecture‐themed mathematics learning game, we conducted two mixed‐method studies to explore the impact and design of game‐based mathematical experience on the math problem‐solving performance of middle school students.

    Results and Conclusions

    The study findings suggested a positive impact of game‐based math experience on math problem‐solving for middle school students. Problematization‐oriented game‐based math tasks with structuring features enhanced students' reasoning with problems and channelled it to doing mathematics.

    Takeaways

    The current research findings support the initiative to frame learning as a sense‐making experience with domain‐specific tasks and inform the design of game‐based mathematical experience and learning support.

     
    more » « less
  3. Students frequently struggled with the mathematizing process – forging connections between implicit and explicit mathematical thinking – when solving a context-rich applied problem. The current research investigated how students interact with and leverage purposively designed ‘mathematizing’ supports when solving applied math problems in a game-based, inquiry-oriented math learning environment. We conducted a naturalistic observation case study and a mixed-method study to investigate middle school students’ usage of mathematizing supports in relation to their math problem-solving performance. The findings indicated a positive and predictive impact of using mathematizing supports on the logged and observed practice of mathematization as well as the performance of applied math problem solving by the students during and after gaming. However, not all students leverage in-game mathematizing supports or engage in problem mathematizing processes. The grounds of students’ constructive interaction with a mathematizing support include their productive persistence in problem solving, their exercise of agency in gauging the utility of mathematizing, and their engagement with deductive reasoning from concrete to abstract. We also observed an interplay between internal and external mathematizing supports, which is moderated by the modality of learning settings.

     
    more » « less
  4. Teamwork is a set of interrelated reasoning, actions and behaviors of team members that facilitate common objectives. Teamwork theory and experiments have resulted in a set of states and processes for team effectiveness in both human-human and agent-agent teams. However, human-agent teaming is less well studied because it is so new and involves asymmetry in policy and intent not present in human teams. To optimize team performance in human-agent teaming, it is critical that agents infer human intent and adapt their polices for smooth coordination. Most literature in human-agent teaming builds agents referencing a learned human model. Though these agents are guaranteed to perform well with the learned model, they lay heavy assumptions on human policy such as optimality and consistency, which is unlikely in many real-world scenarios. In this paper, we propose a novel adaptive agent architecture in human-model-free setting on a two-player cooperative game, namely Team Space Fortress (TSF). Previous human-human team research have shown complementary policies in TSF game and diversity in human players’ skill, which encourages us to relax the assumptions on human policy. Therefore, we discard learning human models from human data, and instead use an adaptation strategy on a pre-trained library of exemplar policies composed of RL algorithms or rule-based methods with minimal assumptions of human behavior. The adaptation strategy relies on a novel similarity metric to infer human policy and then selects the most complementary policy in our library to maximize the team performance. The adaptive agent architecture can be deployed in real-time and generalize to any off-the-shelf static agents. We conducted human-agent experiments to evaluate the proposed adaptive agent framework, and demonstrated the suboptimality, diversity, and adaptability of human policies in human-agent teams. 
    more » « less
  5. Abstract. Game-based learning environments (GBLEs) are often criticized for not offering adequate support for students when learning and problem solving within these environments. A key aspect of GBLEs is the verbal representation of information such as text. This study examined learners’ metacognitive judgments of informational text (e.g., books and articles) through eye gaze behaviors within CRYSTAL ISLAND (CI). Ninety-one undergraduate students interacted with game elements during problem-solving in CI, a GBLE focused on facilitating the development of self-regulated learning (SRL) skills and domain-specific knowledge in microbiology. The results suggest engaging with informational text along with other goal-directed actions (actions needed to achieve the end goal) are large components of time spent within CI. Our findings revealed goal-directed actions, specifically reading informational texts, were significant predictors of participants’ proportional learning gains (PLGs) after problem solving with CI. Additionally, we found significant differences in PLGs where participants who spent a greater time fixating and reengaging with goal- relevant text within the environment demonstrated greater proportional learning after problem solving in CI. 
    more » « less