skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Patterns of Using Multimodal External Representations in Digital Game-Based Learning
Although prior research has highlighted the significance of representations for mathematical learning, there is still a lack of research on how students use multimodal external representations (MERs) to solve mathematical tasks in digital game-based learning (DGBL) environments. This exploratory study was to examine the salient patterns problem solvers demonstrated using MERs when they engaged in a single-player, three-dimensional architecture game that requires the acquisition and application of math knowledge and thinking in game-based context problem solving. We recorded and systematically coded the behaviors of using MERs demonstrated by 20 university students during 1.5 hours of gameplay. We conducted both cluster and sequential analyses with a total of 2654 encoded behaviors. The study indicated that the maneuverable visual-spatial representation was most frequently used in the selected architecture game. All of the participants performed a high level of representational transformations, including both treatment and conversion transformations. However, compared to the students in the second cluster who were mostly non-game players, students in the first cluster (composed of mainly experienced video game players) displayed a higher frequency of interacting with various MERs and a more cautious and optimized reflective problem-solving process.  more » « less
Award ID(s):
1720533
PAR ID:
10324814
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Educational Computing Research
ISSN:
0735-6331
Page Range / eLocation ID:
073563312210877
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background. Middle school students’ math anxiety and low engagement have been major issues in math education. In order to reduce their anxiety and support their math learning, game-based learning (GBL) has been implemented. GBL research has underscored the role of social dynamics to facilitate a qualitative understanding of students’ knowledge. Whereas students’ peer interactions have been deemed a social dynamic, the relationships among peer interaction, task efficiency, and learning engagement were not well understood in previous empirical studies. Method. This mixed-method research implemented E-Rebuild, which is a 3D architecture game designed to promote students’ math problem-solving skills. We collected a total of 102 50-minutes gameplay sessions performed by 32 middle school students. Using video-captured and screen-recorded gameplaying sessions, we implemented behavior observations to measure students’ peer interaction efficiency, task efficiency, and learning engagement. We used association analyses, sequential analysis, and thematic analysis to explain how peer interaction promoted students’ task efficiency and learning engagement. Results. Students’ peer interactions were negatively related to task efficiency and learning engagement. There were also different gameplay patterns by students’ learning/task-relevant peer-interaction efficiency (PIE) level. Students in the low PIE group tended to progress through game tasks more efficiently than those in the high PIE group. The results of qualitative thematic analysis suggested that the students in the low PIE group showed more reflections on game-based mathematical problem solving, whereas those with high PIE experienced distractions during gameplay. Discussion. This study confirmed that students’ peer interactions without purposeful and knowledge-constructive collaborations led to their low task efficiency, as well as low learning engagement. The study finding shows further design implications: (1) providing in-game prompts to stimulate students’ math-related discussions and (2) developing collaboration contexts that legitimize students’ interpersonal knowledge exchanges with peers. 
    more » « less
  2. Abstract. Game-based learning environments (GBLEs) are often criticized for not offering adequate support for students when learning and problem solving within these environments. A key aspect of GBLEs is the verbal representation of information such as text. This study examined learners’ metacognitive judgments of informational text (e.g., books and articles) through eye gaze behaviors within CRYSTAL ISLAND (CI). Ninety-one undergraduate students interacted with game elements during problem-solving in CI, a GBLE focused on facilitating the development of self-regulated learning (SRL) skills and domain-specific knowledge in microbiology. The results suggest engaging with informational text along with other goal-directed actions (actions needed to achieve the end goal) are large components of time spent within CI. Our findings revealed goal-directed actions, specifically reading informational texts, were significant predictors of participants’ proportional learning gains (PLGs) after problem solving with CI. Additionally, we found significant differences in PLGs where participants who spent a greater time fixating and reengaging with goal- relevant text within the environment demonstrated greater proportional learning after problem solving in CI. 
    more » « less
  3. Problem solvers vary their approaches to solving problems depending on the context of the problem, the requirements of the solution, and the ways in which the problems and material to solve the problem are represented, or representations. Representations take many forms (i.e. tables, graphs, figures, images, formulas, visualizations, and other similar contexts) and are used to communicate information to a problem solver. Engagement with certain representations varies between problem solvers and can influence design and solution quality. A problem solver’s evaluation of representations and the reasons for using a representation can be considered factors in problem-solving heuristics. These factors describe unique problem-solving behaviors that can help understand problem solvers. These behaviors may lead to important relationships between a problem solver’s decisions and their ability to solve a problem and overall quality of the solution. Therefore, we pose the following research question: How do factors of problem-solving heuristics describe the unique behaviors of engineering students as they solve multiple problems? To answer this question, we interviewed 16 undergraduate engineering students studying civil engineering. The interviews consisted of a problem-solving portion that was followed immediately by a semi-structured retrospective interview with probing questions created based on the real time monitoring of the problem-solving interview using eye tracking techniques. The problem-solving portion consisted of solving three problems related to the concept of headloss in fluid flow through pipes. Each of the three problems included the same four representations that were used by the students as approaches to solving the problem. The representations are common ways to present the concept of headloss in pipe flow and included two formulas, a set of tables, and a graph. This paper presents a set of common reasons for why decisions were made during the problem-solving process that help to understand more about the problem-solving behavior of engineering students. 
    more » « less
  4. A key affordance of game-based learning environments is their potential to unobtrusively assess student learning without interfering with gameplay. In this paper, we introduce a temporal analytics framework for stealth assessment that analyzes students' problem-solving strategies. The strategy-based temporal analytic framework uses long short-term memory network-based evidence models and clusters sequences of students' problem-solving behaviors across consecutive tasks. We investigate this strategy based temporal analytics framework on a dataset of problem solving behaviors collected from student interactions with a game-based learning environment for middle school computational thinking. The results of an evaluation indicate that the strategy-based temporal analytics framework significantly outperforms competitive baseline models with respect to stealth assessment predictive accuracy. 
    more » « less
  5. This paper demonstrated how to apply Machine Learning (ML) techniques to analyze student interaction data collected in an online mathematics game. Using a data-driven approach, we examined 1) how different ML algorithms influenced the precision of middle-school students’ (N = 359) performance (i.e. posttest math knowledge scores) prediction and 2) what types of in-game features (i.e. student in-game behaviors, math anxiety, mathematical strategies) were associated with student math knowledge scores. The results indicated that the Random Forest algorithm showed the best performance (i.e. the accuracy of models, error measures) in predicting posttest math knowledge scores among the seven algorithms employed. Out of 37 features included in the model, the validity of the students’ first mathematical transformation was the most predictive of their posttest math knowledge scores. Implications for game learning analytics and supporting students’ algebraic learning are discussed based on the findings. 
    more » « less