skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multiscale Temporal Variability of the Global Air‐Sea CO 2 Flux Anomaly
Key Points Global air‐sea CO 2 flux is dominated by wind effect on subseasonal time scales, on longer time scales, ∆pCO 2 effect is the main driver The decadal variability in global flux anomaly was almost entirely driven by ∆pCO 2 effect with highest contribution from high latitudes Drivers of global air‐sea CO 2 flux anomaly also dominate the regional variability, particularly in the mid‐high latitude oceans  more » « less
Award ID(s):
2028633
PAR ID:
10454782
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Geophysical Research: Biogeosciences
Volume:
128
Issue:
6
ISSN:
2169-8953
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This contribution to the RECCAP2 (REgional Carbon Cycle Assessment and Processes) assessment analyzes the processes that determine the global ocean carbon sink, and its trends and variability over the period 1985–2018, using a combination of models and observation‐based products. The mean sea‐air CO2flux from 1985 to 2018 is −1.6 ± 0.2 PgC yr−1based on an ensemble of reconstructions of the history of sea surface pCO2(pCO2products). Models indicate that the dominant component of this flux is the net oceanic uptake of anthropogenic CO2, which is estimated at −2.1 ± 0.3 PgC yr−1by an ensemble of ocean biogeochemical models, and −2.4 ± 0.1 PgC yr−1by two ocean circulation inverse models. The ocean also degasses about 0.65 ± 0.3 PgC yr−1of terrestrially derived CO2, but this process is not fully resolved by any of the models used here. From 2001 to 2018, the pCO2products reconstruct a trend in the ocean carbon sink of −0.61 ± 0.12 PgC yr−1 decade−1, while biogeochemical models and inverse models diagnose an anthropogenic CO2‐driven trend of −0.34 ± 0.06 and −0.41 ± 0.03 PgC yr−1 decade−1, respectively. This implies a climate‐forced acceleration of the ocean carbon sink in recent decades, but there are still large uncertainties on the magnitude and cause of this trend. The interannual to decadal variability of the global carbon sink is mainly driven by climate variability, with the climate‐driven variability exceeding the CO2‐forced variability by 2–3 times. These results suggest that anthropogenic CO2dominates the ocean CO2sink, while climate‐driven variability is potentially large but highly uncertain and not consistently captured across different methods. 
    more » « less
  2. We present improved estimates of air–sea CO2exchange over three latitude bands of the Southern Ocean using atmospheric CO2measurements from global airborne campaigns and an atmospheric 4-box inverse model based on a mass-indexed isentropic coordinate (Mθe). These flux estimates show two features not clearly resolved in previous estimates based on inverting surface CO2measurements: a weak winter-time outgassing in the polar region and a sharp phase transition of the seasonal flux cycles between polar/subpolar and subtropical regions. The estimates suggest much stronger summer-time uptake in the polar/subpolar regions than estimates derived through neural-network interpolation of pCO2data obtained with profiling floats but somewhat weaker uptake than a recent study by Long et al. [Science374, 1275–1280 (2021)], who used the same airborne data and multiple atmospheric transport models (ATMs) to constrain surface fluxes. Our study also uses moist static energy (MSE) budgets from reanalyses to show that most ATMs tend to have excessive diabatic mixing (transport across moist isentrope, θe, or Mθesurfaces) at high southern latitudes in the austral summer, which leads to biases in estimates of air–sea CO2exchange. Furthermore, we show that the MSE-based constraint is consistent with an independent constraint on atmospheric mixing based on combining airborne and surface CO2observations. 
    more » « less
  3. Abstract The ocean's organic carbon export is a key control on atmospheric pCO2and stimulating this export could potentially mitigate climate change. We use a data‐constrained model to calculate the sensitivity of atmospheric pCO2to local changes in export using an adjoint approach. A perpetual enhancement of the biological pump's export by 0.1 PgC/yr could achieve a roughly 1% reduction in pCO2at average sensitivity. The sensitivity varies roughly 5‐fold across different ocean regions and is proportional to the difference between the mean sequestration timeτseqof regenerated carbon and the response timeτpreof performed carbon, which is the reduction in the preformed carbon inventory per unit increase in local export production. Air‐sea CO2disequilibrium modulates the geographic pattern ofτpre, causing particularly high sensitivities (2–3 times the global mean) in the Antarctic Divergence region of the Southern Ocean. 
    more » « less
  4. Abstract In climate studies, it is crucial to distinguish between changes caused by natural variability and those resulting from external forcing. Here we use a suite of numerical experiments based on the ECCO‐Darwin ocean biogeochemistry model to separate the impact of the atmospheric carbon dioxide (CO2) growth rate and climate on the ocean carbon sink — with a goal of disentangling the space‐time variability of the dominant drivers. When globally integrated, the variable atmospheric growth rate and climate exhibit similar magnitude impacts on ocean carbon uptake. At local scales, interannual variability in air‐sea CO2flux is dominated by climate. The implications of our study for real‐world ocean observing systems are clear: in order to detect future changes in the ocean sink due to slowing atmospheric CO2growth rates, better observing systems and constraints on climate‐driven ocean variability are required. 
    more » « less
  5. The Southern Ocean plays a vital role in global CO2uptake, but the magnitude and even the sign of the flux remain uncertain, and the influence of phytoplankton phenology is underexplored. This study focuses on the West Antarctic Peninsula, a region experiencing rapid climate change, to examine shifts in seasonal carbon uptake. Using 20 years of in situ air‐sea CO2flux and satellite‐derived Chlorophyll‐a, we observe that the seasonal cycles of both air‐sea CO2flux and Chlorophyll‐a intensify poleward. The amplitude of the seasonal cycle of the non‐thermal component of surface ocean pCO2increases with increasing latitude, while the amplitude of the thermal component remains relatively stable. Pronounced biological uptake occurs over the shelf in austral summer despite reduced CO2solubility in warmer waters, which typically limits carbon uptake through physical processes. These findings underscore the prominence of biological mechanisms in regulating carbon fluxes in this rapidly changing region. 
    more » « less