skip to main content


Title: Descriptions of three new diatom species in the genus Eunotia (Eunotiaceae, Bacillariophyta) from the Eocene Arctic
Eunotia is the largest and most diverse genus within the family Eunotiaceae, a primarily freshwater group of diatoms often found in dilute, acidic and humic-stained environments. Species in this genus are characterized by being asymmetric along their apical axis, symmetric about the transapical axis, and with a simple and reduced raphe system situated largely on the mantle and restricted to the apical ends of the valve. In addition, Eunotia taxa have one or more rimoportula per valve, usually close to the apex. Because of their reduced raphe system, coupled with the presence of rimoportulae, Eunotia and its relatives are often viewed as the oldest lineage of raphe-bearing diatoms. To date, the oldest remains of Eunotia species have been reported from the early to middle Eocene, including from the Giraffe Pipe locality, an ancient Eocene fossil site located in northern Canada near the Arctic Circle. Rocks from this site contain a large and diverse assemblage of Eunotia taxa. The purpose of this study is to begin to characterize this assemblage with descriptions of three new species, Eunotia giraffensis sp. nov., E. petasum sp. nov. and E. pseudonaegelii sp. nov. The new species, representing the longest specimens found at the Giraffe Pipe locality, each possess characteristics common to Eunotia making them easily assigned to this genus. Because the Eunotia lineage was well established by the early part of the Eocene, it is likely to be significantly older.  more » « less
Award ID(s):
1940070
NSF-PAR ID:
10454788
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Phytotaxa
Volume:
567
Issue:
1
ISSN:
1179-3155
Page Range / eLocation ID:
21 to 35
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background and aims – Diatoms began to inhabit freshwater by at least the Late Cretaceous, becoming well established by the early to middle Eocene. Aulacoseira, an important diatom in numerous ponds, lakes and rivers today, was one of the earliest known genera to colonize freshwater ecosystems. Members of this genus with characteristics familiar to those found on modern species became increasingly more abundant by the Eocene, and continued to thrive throughout the Miocene to the present. We describe a new species of Aulacoseira from an early to middle Eocene site near the Arctic Circle in northern Canada. Methods – Twelve samples taken from the Giraffe Pipe core were analysed in this study. Light and scanning electron microscopy were used to document morphological characters. Morphometric measurements were made from 200 specimens per sample (n = 1200), and used to investigate changes in valve size over time. Key results – The new species, Aulacoseira giraffensis, has valves with a length:width ratio close to 1, a hyaline valve face, straight mantle striae, a shallow ringleiste, branched linking spines, concave-convex complementarity on adjacent valve faces, and rimoportulae with simple papillae-like structure. The suite of characters, especially the highly branched spines, concave-convex valves and simple rimoportulae, is unique for this species. Large numbers of A. giraffensis specimens were found over a ten-metre section of the core, representing thousands of years. These high concentrations are indicative of abundant, bloom- like, growth. Conclusions – The locality represents one of the earliest known records of Aulacoseira dominating a freshwater community. Findings confirm that the morphological body plan for the genus was well established by the Eocene. Although findings indicate evolutionary stasis in morphological structure for A. giraffensis over a time scale of thousands of years, oscillations in valve morphometrics could potentially be used to trace changes in the environment of this ancient Arctic waterbody. 
    more » « less
  2. Abstract How will freshwater lakes in the Arctic respond to climate change, especially if polar amplification results in even greater warming at these northern latitudes? Deep time analogs offer opportunities to understand the potential effects of future climate warming on arctic environments. A core from the Giraffe Pipe fossil locality located in the Northwest Territories of Canada offers a window into the life of a thriving Arctic freshwater ecosystem in the Eocene during greenhouse conditions. The remains of an extensive deposit of microfossils, including photosynthetic protists (chrysophytes, diatoms, and green algae), heterotrophic protists (euglyphids, heliozoans, paraphysomonads, and rotosphaerids), and sponges, were used to reconstruct the history of the ancient waterbody. Concentrations and diversity of chrysophyte taxa were extensive throughout the core, accounting for >70% of the microfossil remains. The ratio of chrysophyte cysts to diatom valves, with a mean value near 14 throughout the core, further emphasized the dominance of the chrysophytes, and given the high diversity of taxa, the locality represents a “paleo-hotspot” for this eukaryote lineage. Based on the totality of fossil evidence, the waterbody within the Giraffe Pipe crater represented a series of relatively shallow aquatic habitats, with changing physical and chemical conditions, and varying water depths. Five major zones were identified, each found to be stable for an extended period of time, but with distinct transitions between successive zones signaling significant shifts in environmental conditions. The study provides valuable insight on how Arctic freshwater ecosystems responded to past warm climates, and to the organisms that could potentially thrive in these environments under future warming scenarios. 
    more » « less
  3. Two new fossil species of the synurophyte genus Mallomonas, M. skogstadii and M. bakeri, are described from Giraffe Pipe, an Eocene locality situated near the Arctic Circle in northern Canada. Scales of both new species share a suite of characters, including an oval- shaped rib encircling approximately half of the base plate and most of the dome, a series of thick ribs on the posterior flange, but lacking on the shield, a thin posterior rim, and a flat and shallow dome. In addition, both species possess two types of scales, body scales and apical scales. Apical scales of M. bakeri form a unique forward-projecting dome, and those of M. skogstadii are significantly different in shape than the body scales. Scales of M. skogstadii are significantly larger and have a different base plate pore pattern than those of M. bakeri, and remains of both taxa were uncovered in strata deposited hundreds of years apart. Based on comparison made with modern species, M. bakeri, and to a lesser extent M. skogstadii, are placed into, and likely represent basal representatives of section Heterospinae. The floras associated with each species reflect acidic environments, probably high in dissolved humic content. 
    more » « less
  4. Abstract

    Eubrachyurans, or ‘higher’ true crabs, are the most speciose group of decapod crustaceans and have a rich fossil record extending into the Early Cretaceous. However, most extant families are first found in the fossil record in the Palaeogene, and particularly in the Eocene. Unfortunately, fossils of many early eubrachyuran groups are often fragmentary, and only a few studies have combined extinct and extant taxa in a phylogenetic context using different optimality criteria. Here, we report the dairoidid crabPhrynolambrus sagittalissp. nov., an enigmatic eubrachyuran from the upper Eocene of Huesca (northern Spain), whose completeness and exquisite preservation permit examination of its anatomy in a phylogenetic context. Dairoidids have previously been considered among the oldest stone crabs (Eriphioidea) or elbow crabs (Parthenopoidea), two disparate and distantly related groups of true crabs living today. Mechanical preparation and computed tomography of the fossil material revealed several diagnostic features that allow a detailed comparison with families across the crab tree of life, and test hypotheses about its phylogenetic affinities.Phrynolambrus sagittalisis the first record of the genus in the Iberian Peninsula, and represents one of the oldest crown parthenopoidean crabs worldwide, expanding our knowledge of the biogeographical distribution of elbow crabs during the Palaeogene, as well as their early origins, anatomical diversity and systematic affinities. Understanding the disparity of Eocene eubrachyurans is pivotal to disentangling the systematic relationships among crown families, and interpreting the spatio‐temporal patterns leading to the evolution of modern faunas.

     
    more » « less
  5. Hyaenodonta is a diverse, extinct group of carnivorous mammals that included weasel- to rhinoceros-sized species. The oldest-known hyaenodont fossils are from the middle Paleocene of North Africa and the antiquity of the group in Afro-Arabia led to the hypothesis that it originated there and dispersed to Asia, Europe, and North America. Here we describe two new hyaenodont species based on the oldest hyaenodont cranial specimens known from Afro-Arabia. The material was collected from the latest Eocene Locality 41 (L-41, ∼34 Ma) in the Fayum Depression, Egypt.Akhnatenavus nefertiticyonsp. nov. has specialized, hypercarnivorous molars and an elongate cranial vault. InA. nefertiticyonthe tallest, piercing cusp on M1–M2is the paracone.Brychotherium ephalmosgen. et sp. nov. has more generalized molars that retain the metacone and complex talonids. InB. ephalmosthe tallest, piercing cusp on M1–M2is the metacone. We incorporate this new material into a series of phylogenetic analyses using a character-taxon matrix that includes novel dental, cranial, and postcranial characters, and samples extensively from the global record of the group. The phylogenetic analysis includes the first application of Bayesian methods to hyaenodont relationships.B. ephalmosis consistently placed within Teratodontinae, an Afro-Arabian clade with several generalist and hypercarnivorous forms, andAkhnatenavusis consistently recovered in Hyainailourinae as part of an Afro-Arabian radiation. The phylogenetic results suggest that hypercarnivory evolved independently three times within Hyaenodonta: in Teratodontinae, in Hyainailourinae, and in Hyaenodontinae. Teratodontines are consistently placed in a close relationship with Hyainailouridae (Hyainailourinae + Apterodontinae) to the exclusion of “proviverrines,” hyaenodontines, and several North American clades, and we propose that the superfamily Hyainailouroidea be used to describe this relationship. Using the topologies recovered from each phylogenetic method, we reconstructed the biogeographic history of Hyaenodonta using parsimony optimization (PO), likelihood optimization (LO), and Bayesian Binary Markov chain Monte Carlo (MCMC) to examine support for the Afro-Arabian origin of Hyaenodonta. Across all analyses, we found that Hyaenodonta most likely originated in Europe, rather than Afro-Arabia. The clade is estimated by tip-dating analysis to have undergone a rapid radiation in the Late Cretaceous and Paleocene; a radiation currently not documented by fossil evidence. During the Paleocene, lineages are reconstructed as dispersing to Asia, Afro-Arabia, and North America. The place of origin of Hyainailouroidea is likely Afro-Arabia according to the Bayesian topologies but it is ambiguous using parsimony. All topologies support the constituent clades–Hyainailourinae, Apterodontinae, and Teratodontinae–as Afro-Arabian and tip-dating estimates that each clade is established in Afro-Arabia by the middle Eocene.

     
    more » « less