- Award ID(s):
- 1952735
- PAR ID:
- 10454845
- Date Published:
- Journal Name:
- Concurrency and Computation: Practice and Experience
- ISSN:
- 1532-0626
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Randomized singular value decomposition (RSVD) is by now a well-established technique for efficiently computing an approximate singular value decomposition of a matrix. Building on the ideas that underpin RSVD, the recently proposed algorithm “randUTV” computes a full factorization of a given matrix that provides low-rank approximations with near-optimal error. Because the bulk of randUTV is cast in terms of communication-efficient operations such as matrix-matrix multiplication and unpivoted QR factorizations, it is faster than competing rank-revealing factorization methods such as column-pivoted QR in most high-performance computational settings. In this article, optimized randUTV implementations are presented for both shared-memory and distributed-memory computing environments. For shared memory, randUTV is redesigned in terms of an algorithm-by-blocks that, together with a runtime task scheduler, eliminates bottlenecks from data synchronization points to achieve acceleration over the standard blocked algorithm based on a purely fork-join approach. The distributed-memory implementation is based on the ScaLAPACK library. The performance of our new codes compares favorably with competing factorizations available on both shared-memory and distributed-memory architectures.more » « less
-
QR factorization is a key tool in mathematics, computer science, operations research, and engineering. This paper presents the roundoff-error-free (REF) QR factorization framework comprising integer-preserving versions of the standard and the thin QR factorizations and associated algorithms to compute them. Specifically, the standard REF QR factorization factors a given matrix $A \in \Z^{m \times n}$ as $A=QDR$, where $Q \in \Z^{m \times m}$ has pairwise orthogonal columns, $D$ is a diagonal matrix, and $R \in \Z^{m \times n}$ is an upper trapezoidal matrix; notably, the entries of $Q$ and $R$ are integral, while the entries of $D$ are reciprocals of integers. In the thin REF QR factorization, $Q \in \Z^{m \times n}$ also has pairwise orthogonal columns, and $R \in \Z^{n \times n}$ is also an upper triangular matrix. In contrast to traditional (i.e., floating-point) QR factorizations, every operation used to compute these factors is integral; thus, REF QR is guaranteed to be an exact orthogonal decomposition. Importantly, the bit-length of every entry in the REF QR factorizations (and within the algorithms to compute them) is bounded polynomially. Notable applications of our REF QR factorizations include finding exact least squares or exact basic solutions (i.e., a rational n-dimensional vector $x$) to any given full column rank or rank deficient linear system $A x = b$, respectively. In addition, our exact factorizations can be used as a subroutine within exact and/or high-precision quadratic programming. Altogether, REF QR provides a framework to obtain exact orthogonal factorizations of any rational matrix (as any rational/decimal matrix can be easily transformed into an integral matrix).more » « less
-
null (Ed.)This survey describes probabilistic algorithms for linear algebraic computations, such as factorizing matrices and solving linear systems. It focuses on techniques that have a proven track record for real-world problems. The paper treats both the theoretical foundations of the subject and practical computational issues. Topics include norm estimation, matrix approximation by sampling, structured and unstructured random embeddings, linear regression problems, low-rank approximation, subspace iteration and Krylov methods, error estimation and adaptivity, interpolatory and CUR factorizations, Nyström approximation of positive semidefinite matrices, single-view (‘streaming’) algorithms, full rank-revealing factorizations, solvers for linear systems, and approximation of kernel matrices that arise in machine learning and in scientific computing.more » « less
-
Abstract Can one recover a matrix efficiently from only matrix‐vector products? If so, how many are needed? This article describes algorithms to recover matrices with known structures, such as tridiagonal, Toeplitz, Toeplitz‐like, and hierarchical low‐rank, from matrix‐vector products. In particular, we derive a randomized algorithm for recovering an unknown hierarchical low‐rank matrix from only matrix‐vector products with high probability, where is the rank of the off‐diagonal blocks, and is a small oversampling parameter. We do this by carefully constructing randomized input vectors for our matrix‐vector products that exploit the hierarchical structure of the matrix. While existing algorithms for hierarchical matrix recovery use a recursive “peeling” procedure based on elimination, our approach uses a recursive projection procedure.
-
To meet the growing need for extended or exact precision solvers, an efficient framework based on Integer-Preserving Gaussian Elimination (IPGE) has been recently developed, which includes dense/sparse LU/Cholesky factorizations and dense LU/Cholesky factorization updates for column and/or row replacement. This paper discusses our ongoing work developing the sparse LU/Cholesky column/row-replacement update and the sparse rank-l update/downdate. We first present some basic background for the exact factorization framework based on IPGE. Then we give our proposed algorithms along with some implementation and data-structure details. Finally, we provide some experimental results showcasing the performance of our update algorithms. Specifically, we show that updating these exact factorizations can typically be 10x to 100x faster than (re-)factorizing the matrices from scratch.more » « less