skip to main content


Title: Investigating structure and dynamics of unentangled poly(dimethyl- co -diphenyl)siloxane via molecular dynamics simulation
Polysiloxane is one of the most important polymeric materials in technological use. Polydimethylsiloxane displays glass-like mechanical properties at low temperatures. Incorporation of phenyl siloxane, via copolymerization for example, improves not only the low-temperature elasticity but also enhances its performance over a wide range of temperatures. Copolymerization with the phenyl component can significantly change the microscopic properties of polysiloxanes, such as chain dynamics and relaxation. However, despite much work in the literature, the influence of such changes is still not clearly understood. In this work, we systematically study the structure and dynamics of random poly(dimethyl- co -diphenyl)siloxane via atomistic molecular dynamics simulations. As the molar ratio ϕ of the diphenyl component increases, we find that the size of the linear copolymer chain expands. At the same time, the chain-diffusivity slows down by over an order of magnitudes. The reduced diffusivity appears to be a result of a complex interplay between the structural and dynamic changes induced by phenyl substitution.  more » « less
Award ID(s):
2323108
NSF-PAR ID:
10454949
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Soft Matter
Volume:
19
Issue:
23
ISSN:
1744-683X
Page Range / eLocation ID:
4265 to 4276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Continuous greenhouse gas monitoring at sub-zero temperatures is needed for monitoring greenhouse gas emission in cold environments such as the Arctic tundra. This work reports a single-frequency electrochemical impedance sensing (SF-EIS) method for real-time continuous monitoring of carbon dioxide (CO2) at a wide range of temperatures (−15 to 40 °C) by using robust ionic liquid (IL) sensing materials and noninvasive, low-power, and low-cost impedance readout mechanisms since they cause minimal changes in the sensing interface, avoiding the baseline change for long-term continuous sensing. In addition, a miniaturized planar electrochemical sensor was fabricated that incorporates a hydrophobic 1-butyl-1-methylpyrrolidinium bis(trifluromethylsulfonyl)imide ([Bmpy][NTf2]) IL electrolyte and Pt black electrode materials. The high viscosity of the ILs facilitates the formation of thin, ordered, and concentrated layers of ionic charges, and the inverse relationship of IL viscosity with temperature makes them especially suited for impedance sensing at low temperatures. The unique low-temperature properties of ILs together with EIS transduction mechanisms are shown to be sensitive and selective for continuously monitoring CO2 at a −15 to 40 °C temperature range via impedance changes at a specifically selected frequency at the open circuit potential (OCP). Molecular dynamics simulations revealed insights into the structure and dynamics of the IL at varying temperatures in the presence of methane and CO2 and provided potential explanations for the observed sensing results. The miniaturized and flexible planar electrochemical sensor with the [Bmpy][NTf2] electrolyte was tested repeatedly at subzero temperatures over a 58-day period, during which good stability and repeatability were obtained. The CO2 impedance sensor was further tested for sensing CO2 from soil samples and shows promising results for their use in real-time monitoring of greenhouse gas emissions in cold temperatures such as permafrost soils. 
    more » « less
  2. Block polymers show promise as solid-state battery electrolytes due to the optimization of conductive and mechanical properties enabled via tuning of block chemistry and length. We investigate a polystyrene-block-poly(oligo-oxyethylene methacrylate) (PS-b-POEM) electrolyte doped with various lithium salts to investigate the role of molecular structure on ion transport properties and on local ion dynamics and associations. Anion charge becomes more delocalized with increasing size, reducing the coupling between salt ions while increasing coupling between ion and polymer chain motions and creating a more mobile overall environment. We observe support for this ion-polymer coupling via 1H, 7Li and 19F NMR spectroscopy, from which we obtain ion-specific mobility transition temperatures that differ from the polymer glass transition temperature. We also note faster transport and weaker local energetic interactions with anion size using temperature-dependent NMR diffusometry. 1H NMR spectroscopy further elucidates polymer chain dynamics and enables quantification of the temperature-dependent fraction of the conducting block that is immobile near the PS-POEM domain interface. NMR thus represents a species-specific and timescale-specific platform to quantify phase and interface behavior, and to correlate ion-specific transport with polymer chain dynamics. 
    more » « less
  3. Recent experimental and theoretical work has shown that sticker clustering can be used to enhance properties such as toughness and creep resistance of polymer networks. While it is clear that the changes in properties are related to a change in network topology, the mechanistic relationship is still not well understood. In this work, the effect of sticker clustering was investigated by comparing the dynamics of random copolymers with those where the stickers are clustered at the ends of the chain in the unentangled regime using both linear mechanics and diffusion measurements. Copolymers of N , N -dimethyl acrylamide (DMA) and pendant histidine groups were synthesized using reversible addition–fragmentation chain transfer (RAFT) polymerization. The clustered polymers were synthesized using a bifunctional RAFT agent, such that the midblock consisted of PDMA and the two end blocks were random copolymers of DMA and the histidine-functionalized monomer. Upon addition of Ni ions, transient metal-coordinate crosslinks are formed as histidine–Ni complexes. Combined studies of rheology, neutron scattering and self-diffusion measurements using forced Rayleigh scattering revealed changes to the network topology and stress relaxation modes. The network topology is proposed to consist of aggregates of the histidine–Ni complexes bridged by the non-associative midblock. Therefore, stress relaxation requires the cooperative dissociation of multiple bonds, resulting in increased relaxation times. The increased relaxation times, however, were accompanied by faster diffusion. This is attributed to the presence of defects such as elastically inactive chain loops. This study demonstrates that the effects of cooperative sticker dissociation can be observed even in the presence of a significant fraction of loop defects which are known to alter the nonlinear properties of conventional telechelic polymers. 
    more » « less
  4. Silicon monoxide (SiO) is classified as a key precursor and fundamental molecular building block to interstellar silicate nanoparticles, which play an essential role in the synthesis of molecular building blocks connected to the Origins of Life. In the cold interstellar medium, silicon monoxide is of critical importance in initiating a series of elementary chemical reactions leading to larger silicon oxides and eventually to silicates. To date, the fundamental formation mechanisms and chemical dynamics leading to gas phase silicon monoxide have remained largely elusive. Here, through a concerted effort between crossed molecular beam experiments and electronic structure calculations, it is revealed that instead of forming highly-stable silicon dioxide (SiO 2 ), silicon monoxide can be formed via a barrierless, exoergic, single-collision event between ground state molecular oxygen and atomic silicon involving non-adiabatic reaction dynamics through various intersystem crossings. Our research affords persuasive evidence for a likely source of highly rovibrationally excited silicon monoxide in cold molecular clouds thus initiating the complex chain of exoergic reactions leading ultimately to a population of silicates at low temperatures in our Galaxy. 
    more » « less
  5. null (Ed.)
    Abstract We present an extensive study of vortex dynamics in a high-quality single crystal of HgBa 2 CuO 4+ δ , a highly anisotropic superconductor that is a model system for studying the effects of anisotropy. From magnetization M measurements over a wide range of temperatures T and fields H , we construct a detailed vortex phase diagram. We find that the temperature-dependent vortex penetration field H p ( T ), second magnetization peak H smp ( T ), and irreversibility field H irr ( T ) all decay exponentially at low temperatures and exhibit an abrupt change in behavior at high temperatures T / T c  >~ 0.5. By measuring the rates of thermally activated vortex motion (creep) S ( T , H ) = | d ln M ( T , H )/ d ln t |, we reveal glassy behavior involving collective creep of bundles of 2D pancake vortices as well as temperature- and time-tuned crossovers from elastic (collective) dynamics to plastic flow. Based on the creep results, we show that the second magnetization peak coincides with the elastic-to-plastic crossover at low T , yet the mechanism changes at higher temperatures. 
    more » « less