skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, April 12 until 2:00 AM ET on Saturday, April 13 due to maintenance. We apologize for the inconvenience.


Title: Exsolution of nanoparticles on A-site-deficient lanthanum ferrite perovskites: its effect on co-electrolysis of CO 2 and H 2 O
La 0.7 Sr 0.2 Ni 0.2 Fe 0.8 O 3 (LSNF), having thermochemical stability, superior ionic and electronic conductivity, and structural flexibility, was investigated as a cathode in SOECs. Exsolution of nanoparticles by reduction of LSNF at elevated temperatures can modulate the characteristics of adsorption, electron transfer, and oxidation states of catalytically active atoms, consequently improving the electrocatalytic activity. The exsolution of NiFe and La 2 NiO 4 nanoparticles to the surface of LSNF under reducing atmosphere (5% H 2 /N 2 ) was verified at various temperatures (500–800 °C) by IFFT from ETEM, TPR and in situ XRD. The exsolved nanoparticles obtained uniform size distribution (4.2–9.2 nm) and dispersion (1.31 to 0.61 × 10 4 particle per μm 2 ) depending on the reduction temperature (700–800 °C) and time (0–10 h). The reoxidation of the reduced LSNF (Red-LSNF) was verified by the XRD patterns, indicative of its redox ability, which allows for redistribution of the nanoparticles between the surface and the bulk. TPD-DRIFTS analysis demonstrated that Red-LSNF had superior H 2 O and CO 2 adsorption behavior as compared to unreduced LSNF, which we attributed to the abundance of oxygen vacancy sites and the exsolved NiFe and La 2 NiO 4 nanoparticles. After the reduction of LSNF, the decreases in the oxidation states of the catalytically active ions, Fe and Ni, were characterized on the surface by XPS as well as in the bulk by XANES. The electrochemical performance of the Red-LSNF cell was superior to that of the LSNF cell for electrolysis of H 2 O, CO 2 , and H 2 O/CO 2 .  more » « less
Award ID(s):
1932638
NSF-PAR ID:
10454978
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Materials Chemistry A
Volume:
10
Issue:
5
ISSN:
2050-7488
Page Range / eLocation ID:
2483 to 2495
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. La0.7Sr0.2Ni0.2Fe0.8O3 (LSNF), having thermochemical stability, superior ionic and electronic conductivity, and structural flexibility, was investigated as a cathode in SOECs. Exsolution of nanoparticles by reduction of LSNF at elevated temperatures can modulate the characteristics of adsorption, electron transfer, and oxidation states of catalytically active atoms, consequently improving the electrocatalytic activity. The exsolution of NiFe and La2NiO4 nanoparticles to the surface of LSNF under reducing atmosphere (5% H2/N2) was verified at various temperatures (500–800 °C) by IFFT from ETEM, TPR and in situ XRD. The exsolved nanoparticles obtained uniform size distribution (4.2–9.2 nm) and dispersion (1.31 to 0.61 × 104 particle per μm2) depending on the reduction temperature (700–800 °C) and time (0–10 h). The reoxidation of the reduced LSNF (Red-LSNF) was verified by the XRD patterns, indicative of its redox ability, which allows for redistribution of the nanoparticles between the surface and the bulk. TPD-DRIFTS analysis demonstrated that Red-LSNF had superior H2O and CO2 adsorption behavior as compared to unreduced LSNF, which we attributed to the abundance of oxygen vacancy sites and the exsolved NiFe and La2NiO4 nanoparticles. After the reduction of LSNF, the decreases in the oxidation states of the catalytically active ions, Fe and Ni, were characterized on the surface by XPS as well as in the bulk by XANES. The electrochemical performance of the Red-LSNF cell was superior to that of the LSNF cell for electrolysis of H2O, CO2, and H2O/CO2. 
    more » « less
  2. Abstract

    Oxidative coupling of methane (OCM) can be performed electrocatalytically by utilizing solid oxide cells, which provide a readily controlled oxygen supply through dense electrolytes. La0.7Sr0.2Ni0.2Fe0.8O3(LSNF) perovskite is an effective anode for OCM. Its surface characteristics and electrocatalytic activity can be improved by reduction and the resultant exsolution of bimetallic NiFe nanoparticles from its bulk. X‐ray diffraction (XRD) and environmental transmission electron microscopy proved that the evolution of hetero‐phases under reducing environment resulted in bimetallic NiFe nanoparticles being formed on the surface. A 36 % improvement in C2+hydrocarbon production rate was achieved due to the reduction of LSNF with the exsolved NiFe nanoparticles. Co‐feeding of H2O enhanced selective conversion of CH4resulting in the production rate of C2+hydrocarbons being increased by 56 %. Analysis of impedance spectra and in‐situ DRIFTS under a CH4+H2O atmosphere provided an understanding for the enhancement on the electrocatalytic OCM.

     
    more » « less
  3. null (Ed.)
    Sr(Ti 0.3 Fe 0.7 )O 3−δ (STF) and the associated exsolution electrodes Sr 0.95 (Ti 0.3 Fe 0.63 Ru 0.07 )O 3−δ (STFR), or Sr 0.95 (Ti 0.3 Fe 0.63 Ni 0.07 )O 3−δ (STFN) are alternatives to Ni-based cermet fuel electrodes for solid oxide electrochemical cells (SOCs). They can provide improved tolerance to redox cycling and fuel impurities, and may allow direct operation with hydrocarbon fuels. However, such perovskite-oxide-based electrodes present processing challenges for co-sintering with thin electrolytes to make fuel electrode supported SOCs. Thus, they have been mostly limited to electrolyte-supported SOCs. Here, we report the first example of the application of perovskite oxide fuel electrodes in novel oxygen electrode supported SOCs (OESCs) with thin YSZ electrolytes, and demonstrate their excellent performance. The OESCs have La 0.8 Sr 0.2 MnO 3−δ –Zr 0.92 Y 0.16 O 2−δ (LSM–YSZ) oxygen electrode-supports that are enhanced via infiltration of SrTi 0.3 Fe 0.6 Co 0.1 O 3−δ , while the fuel electrodes are either Ni-YSZ, STF, STFN, or STFR. Fuel cell power density as high as 1.12 W cm −2 is obtained at 0.7 V and 800 °C in humidified hydrogen and air with the STFR electrode, 60% higher than the same cell made with a Ni-YSZ electrode. Electrolysis current density as high as −1.72 A cm −2 is obtained at 1.3 V and 800 °C in 50% H 2 O to 50% H 2 mode; the STFR cell yields a value 72% higher than the same cell made with a Ni-YSZ electrode, and competitive with the widely used conventional Ni-YSZ-supported cells. The high performance is due in part to the low resistance of the thin YSZ electrolyte, and also to the low fuel electrode polarization resistance, which decreases with fuel electrode in the order: Ni-YSZ > STF > STFN > STFR. The high performance of the latter two electrodes is due to exsolution of catalytic metal nanoparticles; the results are discussed in terms of the microstructure and properties of each electrode material, and surface oxygen exchange resistance values are obtained over a range of conditions for STF, STFN, and STFN. The STF fuel electrodes also provide good stability during redox cycling. 
    more » « less
  4. Abstract

    Phase‐pure [NiO]0.5[Al2O3]0.5spinel nanoparticles (NPs) with limited aggregation were obtained via liquid‐feed flame spray pyrolysis (LF‐FSP) by combusting metalloorganic precursor solutions. Thereafter “chocolate chip‐like” Nix[NiO0.5‐x][Al2O3]0.5nanoparticles consisting of primary [NiO0.5‐x][Al2O3]0.5particles with average particle sizes of 40‐60 nm decorated with Ni metal particles (<10 nm in diameter) dispersed on the surface were synthesized by heat treating the spinel NPs at 800°C/7 h in flowing 5% H2:N2100 mL/min in a fluidized bed reactor. The synthesized materials were characterized using TEM, XRD, FTIR, and TGA/DTA. The Ni depleted areas consist primarily of γ‐Al2O3. The Ni content (800°C) was determined by TGA to be ≈11.3 wt.% based on TGA oxidation behavior. The successful synthesis of such nanocomposites with limited aggregation on a high temperature support provides a facile route to synthesize well‐defined NP catalysts. This work serves as a baseline study for an accompanying paper, wherein thin, flexible, dense films made from these same NPs are used as regenerable catalysts for carbon nanotube syntheses.

     
    more » « less
  5. Bimagnetic nanoparticles show promise for applications in energy efficient magnetic storage media and magnetic device applications. The magnetic properties, including the exchange bias of nanostructured materials can be tuned by variation of the size, composition, and morphology of the core vs overlayer of the nanoparticles (NPs). The purpose of this study is to investigate the optimal synthesis routes, structure and magnetic properties of novel CoO/NiFe 2 O 4 heterostructured nanocrystals (HNCs). In this work, we aim to examine how the size impacts the exchange bias, coercivity and other magnetic properties of the CoO/NiFe 2 O 4 HNCs. The nanoparticles with sizes ranging from 10 nm to 24 nm were formed by synthesis of an antiferromagnetic (AFM) CoO core and deposition of a ferrimagnetic (FiM) NiFe 2 O 4 overlayer. A highly crystalline magnetic phase is more likely to occur when the morphology of the core-overgrowth is present, which enhances the coupling at the AFM-FiM interface. The CoO core NPs are prepared using thermal decomposition of Co(OH) 2 at 600 °C for 2 hours in a pure argon atmosphere, whereas the HNCs are obtained first using thermal evaporation followed by hydrothermal synthesis. The structural and morphological characterization made using X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), and scanning electron microscopy (SEM) techniques verifies that the HNCs are comprised of a CoO core and a NiFe 2 O 4 overgrowth phase. Rietveld refinement of the XRD data shows that the CoO core has the rocksalt (Fd3 m) crystal structure and the NiFe 2 O 4 overgrowth has the spinel (C12/m1) crystal structure. SEM-EDS data indicates the presence and uniform distribution of Co, Ni and Fe in the HNCs. The results from PPMS magnetization measurements of the CoO/NiFe 2 O 4 HNCs are discussed herein. 
    more » « less